* Simplify DropTrees calling logic * Add `training` parameter for prediction method. * [Breaking]: Add `training` to C API. * Change for R and Python custom objective. * Correct comment. Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu> Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
======================
XGBoost Python Package
======================
|PyPI version|
Installation
============
From `PyPI <https://pypi.python.org/pypi/xgboost>`_
---------------------------------------------------
For a stable version, install using ``pip``::
pip install xgboost
.. |PyPI version| image:: https://badge.fury.io/py/xgboost.svg
:target: http://badge.fury.io/py/xgboost
For building from source, see `build <https://xgboost.readthedocs.io/en/latest/build.html>`_.