tqchen 9ccbeaa8f0 Merge commit '75bf97b57539e5572e7ae8eba72bac6562c63c07'
Conflicts:
	subtree/rabit/rabit-learn/io/line_split-inl.h
	subtree/rabit/yarn/build.sh
2015-03-21 00:48:34 -07:00

135 lines
3.9 KiB
C++

/*!
* Copyright (c) 2015 by Contributors
* \file linear.h
* \brief Linear and Logistic regression
*
* \author Tianqi Chen
*/
#ifndef RABIT_LINEAR_H_
#define RABIT_LINEAR_H_
#include <omp.h>
#include "../utils/data.h"
#include "../solver/lbfgs.h"
namespace rabit {
namespace linear {
/*! \brief simple linear model */
struct LinearModel {
struct ModelParam {
/*! \brief global bias */
float base_score;
/*! \brief number of features */
size_t num_feature;
/*! \brief loss type*/
int loss_type;
// reserved field
int reserved[16];
// constructor
ModelParam(void) {
memset(this, 0, sizeof(ModelParam));
base_score = 0.5f;
num_feature = 0;
loss_type = 1;
num_feature = 0;
}
// initialize base score
inline void InitBaseScore(void) {
utils::Check(base_score > 0.0f && base_score < 1.0f,
"base_score must be in (0,1) for logistic loss");
base_score = -std::log(1.0f / base_score - 1.0f);
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name, const char *val) {
using namespace std;
if (!strcmp("base_score", name)) {
base_score = static_cast<float>(atof(val));
}
if (!strcmp("num_feature", name)) {
num_feature = static_cast<size_t>(atol(val));
}
if (!strcmp("objective", name)) {
if (!strcmp("linear", val)) {
loss_type = 0;
} else if (!strcmp("logistic", val)) {
loss_type = 1;
} else {
utils::Error("unknown objective type %s\n", val);
}
}
}
// transform margin to prediction
inline float MarginToPred(float margin) const {
if (loss_type == 1) {
return 1.0f / (1.0f + std::exp(-margin));
} else {
return margin;
}
}
// margin to loss
inline float MarginToLoss(float label, float margin) const {
if (loss_type == 1) {
float nlogprob;
if (margin > 0.0f) {
nlogprob = std::log(1.0f + std::exp(-margin));
} else {
nlogprob = -margin + std::log(1.0f + std::exp(margin));
}
return label * nlogprob +
(1.0f -label) * (margin + nlogprob);
} else {
float diff = margin - label;
return 0.5f * diff * diff;
}
}
inline float PredToGrad(float label, float pred) const {
return pred - label;
}
inline float PredictMargin(const float *weight,
const SparseMat::Vector &v) const {
// weight[num_feature] is bias
float sum = base_score + weight[num_feature];
for (unsigned i = 0; i < v.length; ++i) {
if (v[i].findex >= num_feature) continue;
sum += weight[v[i].findex] * v[i].fvalue;
}
return sum;
}
inline float Predict(const float *weight,
const SparseMat::Vector &v) const {
return MarginToPred(PredictMargin(weight, v));
}
};
// model parameter
ModelParam param;
// weight corresponding to the model
float *weight;
LinearModel(void) : weight(NULL) {
}
~LinearModel(void) {
if (weight != NULL) delete [] weight;
}
// load model
inline void Load(rabit::IStream &fi) {
fi.Read(&param, sizeof(param));
if (weight == NULL) {
weight = new float[param.num_feature + 1];
}
fi.Read(weight, sizeof(float) * (param.num_feature + 1));
}
inline void Save(rabit::IStream &fo, const float *wptr = NULL) {
fo.Write(&param, sizeof(param));
if (wptr == NULL) wptr = weight;
fo.Write(wptr, sizeof(float) * (param.num_feature + 1));
}
inline float Predict(const SparseMat::Vector &v) const {
return param.Predict(weight, v);
}
};
} // namespace linear
} // namespace rabit
#endif // RABIT_LINEAR_H_