xgboost/src/tree/updater_gpu_common.cuh
Rong Ou e4b74c4d22
Gradient based sampling for GPU Hist (#5093)
* Implement gradient based sampling for GPU Hist tree method.
* Add samplers and handle compacted page in GPU Hist.
2020-02-04 10:31:27 +08:00

192 lines
5.3 KiB
Plaintext

/*!
* Copyright 2017-2019 XGBoost contributors
*/
#pragma once
#include <thrust/random.h>
#include <cstdio>
#include <cub/cub.cuh>
#include <stdexcept>
#include <string>
#include <vector>
#include "../common/device_helpers.cuh"
#include "../common/random.h"
#include "param.h"
namespace xgboost {
namespace tree {
struct GPUTrainingParam {
// minimum amount of hessian(weight) allowed in a child
float min_child_weight;
// L2 regularization factor
float reg_lambda;
// L1 regularization factor
float reg_alpha;
// maximum delta update we can add in weight estimation
// this parameter can be used to stabilize update
// default=0 means no constraint on weight delta
float max_delta_step;
GPUTrainingParam() = default;
XGBOOST_DEVICE explicit GPUTrainingParam(const TrainParam& param)
: min_child_weight(param.min_child_weight),
reg_lambda(param.reg_lambda),
reg_alpha(param.reg_alpha),
max_delta_step(param.max_delta_step) {}
};
using NodeIdT = int32_t;
/** used to assign default id to a Node */
static const bst_node_t kUnusedNode = -1;
/**
* @enum DefaultDirection node.cuh
* @brief Default direction to be followed in case of missing values
*/
enum DefaultDirection {
/** move to left child */
kLeftDir = 0,
/** move to right child */
kRightDir
};
struct DeviceSplitCandidate {
float loss_chg;
DefaultDirection dir;
int findex;
float fvalue;
GradientPair left_sum;
GradientPair right_sum;
XGBOOST_DEVICE DeviceSplitCandidate()
: loss_chg(-FLT_MAX), dir(kLeftDir), fvalue(0), findex(-1) {}
template <typename ParamT>
XGBOOST_DEVICE void Update(const DeviceSplitCandidate& other,
const ParamT& param) {
if (other.loss_chg > loss_chg &&
other.left_sum.GetHess() >= param.min_child_weight &&
other.right_sum.GetHess() >= param.min_child_weight) {
*this = other;
}
}
XGBOOST_DEVICE void Update(float loss_chg_in, DefaultDirection dir_in,
float fvalue_in, int findex_in,
GradientPair left_sum_in,
GradientPair right_sum_in,
const GPUTrainingParam& param) {
if (loss_chg_in > loss_chg &&
left_sum_in.GetHess() >= param.min_child_weight &&
right_sum_in.GetHess() >= param.min_child_weight) {
loss_chg = loss_chg_in;
dir = dir_in;
fvalue = fvalue_in;
left_sum = left_sum_in;
right_sum = right_sum_in;
findex = findex_in;
}
}
XGBOOST_DEVICE bool IsValid() const { return loss_chg > 0.0f; }
};
struct DeviceSplitCandidateReduceOp {
GPUTrainingParam param;
DeviceSplitCandidateReduceOp(GPUTrainingParam param) : param(param) {}
XGBOOST_DEVICE DeviceSplitCandidate operator()(
const DeviceSplitCandidate& a, const DeviceSplitCandidate& b) const {
DeviceSplitCandidate best;
best.Update(a, param);
best.Update(b, param);
return best;
}
};
struct DeviceNodeStats {
GradientPair sum_gradients;
float root_gain;
float weight;
/** default direction for missing values */
DefaultDirection dir;
/** threshold value for comparison */
float fvalue;
GradientPair left_sum;
GradientPair right_sum;
/** \brief The feature index. */
int fidx;
/** node id (used as key for reduce/scan) */
NodeIdT idx;
HOST_DEV_INLINE DeviceNodeStats()
: sum_gradients(),
root_gain(-FLT_MAX),
weight(-FLT_MAX),
dir(kLeftDir),
fvalue(0.f),
left_sum(),
right_sum(),
fidx(kUnusedNode),
idx(kUnusedNode) {}
template <typename ParamT>
HOST_DEV_INLINE DeviceNodeStats(GradientPair sum_gradients, NodeIdT nidx,
const ParamT& param)
: sum_gradients(sum_gradients),
dir(kLeftDir),
fvalue(0.f),
fidx(kUnusedNode),
idx(nidx) {
this->root_gain =
CalcGain(param, sum_gradients.GetGrad(), sum_gradients.GetHess());
this->weight =
CalcWeight(param, sum_gradients.GetGrad(), sum_gradients.GetHess());
}
HOST_DEV_INLINE void SetSplit(float fvalue, int fidx, DefaultDirection dir,
GradientPair left_sum, GradientPair right_sum) {
this->fvalue = fvalue;
this->fidx = fidx;
this->dir = dir;
this->left_sum = left_sum;
this->right_sum = right_sum;
}
HOST_DEV_INLINE void SetSplit(const DeviceSplitCandidate& split) {
this->SetSplit(split.fvalue, split.findex, split.dir, split.left_sum,
split.right_sum);
}
/** Tells whether this node is part of the decision tree */
HOST_DEV_INLINE bool IsUnused() const { return (idx == kUnusedNode); }
/** Tells whether this node is a leaf of the decision tree */
HOST_DEV_INLINE bool IsLeaf() const {
return (!IsUnused() && (fidx == kUnusedNode));
}
};
template <typename T>
struct SumCallbackOp {
// Running prefix
T running_total;
// Constructor
XGBOOST_DEVICE SumCallbackOp() : running_total(T()) {}
XGBOOST_DEVICE T operator()(T block_aggregate) {
T old_prefix = running_total;
running_total += block_aggregate;
return old_prefix;
}
};
// Total number of nodes in tree, given depth
XGBOOST_DEVICE inline int MaxNodesDepth(int depth) {
return (1 << (depth + 1)) - 1;
}
} // namespace tree
} // namespace xgboost