xgboost/src/tree/gpu_hist/gradient_based_sampler.cu
Rong Ou e4b74c4d22
Gradient based sampling for GPU Hist (#5093)
* Implement gradient based sampling for GPU Hist tree method.
* Add samplers and handle compacted page in GPU Hist.
2020-02-04 10:31:27 +08:00

381 lines
15 KiB
Plaintext

/*!
* Copyright 2019 by XGBoost Contributors
*/
#include <thrust/functional.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include <xgboost/host_device_vector.h>
#include <xgboost/logging.h>
#include <algorithm>
#include <limits>
#include "../../common/compressed_iterator.h"
#include "../../common/random.h"
#include "gradient_based_sampler.cuh"
namespace xgboost {
namespace tree {
/*! \brief A functor that returns random weights. */
class RandomWeight : public thrust::unary_function<size_t, float> {
public:
explicit RandomWeight(size_t seed) : seed_(seed) {}
XGBOOST_DEVICE float operator()(size_t i) const {
thrust::default_random_engine rng(seed_);
thrust::uniform_real_distribution<float> dist;
rng.discard(i);
return dist(rng);
}
private:
uint32_t seed_;
};
/*! \brief A functor that performs a Bernoulli trial to discard a gradient pair. */
class BernoulliTrial : public thrust::unary_function<size_t, bool> {
public:
BernoulliTrial(size_t seed, float p) : rnd_(seed), p_(p) {}
XGBOOST_DEVICE bool operator()(size_t i) const {
return rnd_(i) > p_;
}
private:
RandomWeight rnd_;
float p_;
};
/*! \brief A functor that returns true if the gradient pair is non-zero. */
struct IsNonZero : public thrust::unary_function<GradientPair, bool> {
XGBOOST_DEVICE bool operator()(const GradientPair& gpair) const {
return gpair.GetGrad() != 0 || gpair.GetHess() != 0;
}
};
/*! \brief A functor that clears the row indexes with empty gradient. */
struct ClearEmptyRows : public thrust::binary_function<GradientPair, size_t, size_t> {
XGBOOST_DEVICE size_t operator()(const GradientPair& gpair, size_t row_index) const {
if (gpair.GetGrad() != 0 || gpair.GetHess() != 0) {
return row_index;
} else {
return std::numeric_limits<std::size_t>::max();
}
}
};
/*! \brief A functor that combines the gradient pair into a single float.
*
* The approach here is based on Minimal Variance Sampling (MVS), with lambda set to 0.1.
*
* \see Ibragimov, B., & Gusev, G. (2019). Minimal Variance Sampling in Stochastic Gradient
* Boosting. In Advances in Neural Information Processing Systems (pp. 15061-15071).
*/
class CombineGradientPair : public thrust::unary_function<GradientPair, float> {
public:
XGBOOST_DEVICE float operator()(const GradientPair& gpair) const {
return sqrtf(powf(gpair.GetGrad(), 2) + kLambda * powf(gpair.GetHess(), 2));
}
private:
static constexpr float kLambda = 0.1f;
};
/*! \brief A functor that calculates the difference between the sample rate and the desired sample
* rows, given a cumulative gradient sum.
*/
class SampleRateDelta : public thrust::binary_function<float, size_t, float> {
public:
SampleRateDelta(common::Span<float> threshold, size_t n_rows, size_t sample_rows)
: threshold_(threshold), n_rows_(n_rows), sample_rows_(sample_rows) {}
XGBOOST_DEVICE float operator()(float gradient_sum, size_t row_index) const {
float lower = threshold_[row_index];
float upper = threshold_[row_index + 1];
float u = gradient_sum / static_cast<float>(sample_rows_ - n_rows_ + row_index + 1);
if (u > lower && u <= upper) {
threshold_[row_index + 1] = u;
return 0.0f;
} else {
return std::numeric_limits<float>::max();
}
}
private:
common::Span<float> threshold_;
size_t n_rows_;
size_t sample_rows_;
};
/*! \brief A functor that performs Poisson sampling, and scales gradient pairs by 1/p_i. */
class PoissonSampling : public thrust::binary_function<GradientPair, size_t, GradientPair> {
public:
PoissonSampling(common::Span<float> threshold, size_t threshold_index, RandomWeight rnd)
: threshold_(threshold), threshold_index_(threshold_index), rnd_(rnd) {}
XGBOOST_DEVICE GradientPair operator()(const GradientPair& gpair, size_t i) {
// If the gradient and hessian are both empty, we should never select this row.
if (gpair.GetGrad() == 0 && gpair.GetHess() == 0) {
return gpair;
}
float combined_gradient = combine_(gpair);
float u = threshold_[threshold_index_];
float p = combined_gradient / u;
if (p >= 1) {
// Always select this row.
return gpair;
} else {
// Select this row randomly with probability proportional to the combined gradient.
// Scale gpair by 1/p.
if (rnd_(i) <= p) {
return gpair / p;
} else {
return GradientPair();
}
}
}
private:
common::Span<float> threshold_;
size_t threshold_index_;
RandomWeight rnd_;
CombineGradientPair combine_;
};
NoSampling::NoSampling(EllpackPageImpl* page) : page_(page) {}
GradientBasedSample NoSampling::Sample(common::Span<GradientPair> gpair, DMatrix* dmat) {
return {dmat->Info().num_row_, page_, gpair};
}
ExternalMemoryNoSampling::ExternalMemoryNoSampling(EllpackPageImpl* page,
size_t n_rows,
const BatchParam& batch_param)
: batch_param_(batch_param),
page_(new EllpackPageImpl(batch_param.gpu_id, page->matrix.info, n_rows)) {}
GradientBasedSample ExternalMemoryNoSampling::Sample(common::Span<GradientPair> gpair,
DMatrix* dmat) {
if (!page_concatenated_) {
// Concatenate all the external memory ELLPACK pages into a single in-memory page.
size_t offset = 0;
for (auto& batch : dmat->GetBatches<EllpackPage>(batch_param_)) {
auto page = batch.Impl();
size_t num_elements = page_->Copy(batch_param_.gpu_id, page, offset);
offset += num_elements;
}
page_concatenated_ = true;
}
return {dmat->Info().num_row_, page_.get(), gpair};
}
UniformSampling::UniformSampling(EllpackPageImpl* page, float subsample)
: page_(page), subsample_(subsample) {}
GradientBasedSample UniformSampling::Sample(common::Span<GradientPair> gpair, DMatrix* dmat) {
// Set gradient pair to 0 with p = 1 - subsample
thrust::replace_if(dh::tbegin(gpair), dh::tend(gpair),
thrust::counting_iterator<size_t>(0),
BernoulliTrial(common::GlobalRandom()(), subsample_),
GradientPair());
return {dmat->Info().num_row_, page_, gpair};
}
ExternalMemoryUniformSampling::ExternalMemoryUniformSampling(EllpackPageImpl* page,
size_t n_rows,
const BatchParam& batch_param,
float subsample)
: original_page_(page), batch_param_(batch_param), subsample_(subsample) {
ba_.Allocate(batch_param_.gpu_id, &sample_row_index_, n_rows);
}
GradientBasedSample ExternalMemoryUniformSampling::Sample(common::Span<GradientPair> gpair,
DMatrix* dmat) {
// Set gradient pair to 0 with p = 1 - subsample
thrust::replace_if(dh::tbegin(gpair), dh::tend(gpair),
thrust::counting_iterator<size_t>(0),
BernoulliTrial(common::GlobalRandom()(), subsample_),
GradientPair());
// Count the sampled rows.
size_t sample_rows = thrust::count_if(dh::tbegin(gpair), dh::tend(gpair), IsNonZero());
size_t n_rows = dmat->Info().num_row_;
// Compact gradient pairs.
gpair_.resize(sample_rows);
thrust::copy_if(dh::tbegin(gpair), dh::tend(gpair), gpair_.begin(), IsNonZero());
// Index the sample rows.
thrust::transform(dh::tbegin(gpair), dh::tend(gpair), dh::tbegin(sample_row_index_), IsNonZero());
thrust::exclusive_scan(dh::tbegin(sample_row_index_), dh::tend(sample_row_index_),
dh::tbegin(sample_row_index_));
thrust::transform(dh::tbegin(gpair), dh::tend(gpair),
dh::tbegin(sample_row_index_),
dh::tbegin(sample_row_index_),
ClearEmptyRows());
// Create a new ELLPACK page with empty rows.
page_.reset(); // Release the device memory first before reallocating
page_.reset(new EllpackPageImpl(batch_param_.gpu_id,
original_page_->matrix.info,
sample_rows));
// Compact the ELLPACK pages into the single sample page.
thrust::fill(dh::tbegin(page_->gidx_buffer), dh::tend(page_->gidx_buffer), 0);
for (auto& batch : dmat->GetBatches<EllpackPage>(batch_param_)) {
page_->Compact(batch_param_.gpu_id, batch.Impl(), sample_row_index_);
}
return {sample_rows, page_.get(), dh::ToSpan(gpair_)};
}
GradientBasedSampling::GradientBasedSampling(EllpackPageImpl* page,
size_t n_rows,
const BatchParam& batch_param,
float subsample) : page_(page), subsample_(subsample) {
ba_.Allocate(batch_param.gpu_id,
&threshold_, n_rows + 1,
&grad_sum_, n_rows);
}
GradientBasedSample GradientBasedSampling::Sample(common::Span<GradientPair> gpair,
DMatrix* dmat) {
size_t n_rows = dmat->Info().num_row_;
size_t threshold_index = GradientBasedSampler::CalculateThresholdIndex(
gpair, threshold_, grad_sum_, n_rows * subsample_);
// Perform Poisson sampling in place.
thrust::transform(dh::tbegin(gpair), dh::tend(gpair),
thrust::counting_iterator<size_t>(0),
dh::tbegin(gpair),
PoissonSampling(threshold_,
threshold_index,
RandomWeight(common::GlobalRandom()())));
return {n_rows, page_, gpair};
}
ExternalMemoryGradientBasedSampling::ExternalMemoryGradientBasedSampling(
EllpackPageImpl* page,
size_t n_rows,
const BatchParam& batch_param,
float subsample) : original_page_(page), batch_param_(batch_param), subsample_(subsample) {
ba_.Allocate(batch_param.gpu_id,
&threshold_, n_rows + 1,
&grad_sum_, n_rows,
&sample_row_index_, n_rows);
}
GradientBasedSample ExternalMemoryGradientBasedSampling::Sample(common::Span<GradientPair> gpair,
DMatrix* dmat) {
size_t n_rows = dmat->Info().num_row_;
size_t threshold_index = GradientBasedSampler::CalculateThresholdIndex(
gpair, threshold_, grad_sum_, n_rows * subsample_);
// Perform Poisson sampling in place.
thrust::transform(dh::tbegin(gpair), dh::tend(gpair),
thrust::counting_iterator<size_t>(0),
dh::tbegin(gpair),
PoissonSampling(threshold_,
threshold_index,
RandomWeight(common::GlobalRandom()())));
// Count the sampled rows.
size_t sample_rows = thrust::count_if(dh::tbegin(gpair), dh::tend(gpair), IsNonZero());
// Compact gradient pairs.
gpair_.resize(sample_rows);
thrust::copy_if(dh::tbegin(gpair), dh::tend(gpair), gpair_.begin(), IsNonZero());
// Index the sample rows.
thrust::transform(dh::tbegin(gpair), dh::tend(gpair), dh::tbegin(sample_row_index_), IsNonZero());
thrust::exclusive_scan(dh::tbegin(sample_row_index_), dh::tend(sample_row_index_),
dh::tbegin(sample_row_index_));
thrust::transform(dh::tbegin(gpair), dh::tend(gpair),
dh::tbegin(sample_row_index_),
dh::tbegin(sample_row_index_),
ClearEmptyRows());
// Create a new ELLPACK page with empty rows.
page_.reset(); // Release the device memory first before reallocating
page_.reset(new EllpackPageImpl(batch_param_.gpu_id,
original_page_->matrix.info,
sample_rows));
// Compact the ELLPACK pages into the single sample page.
thrust::fill(dh::tbegin(page_->gidx_buffer), dh::tend(page_->gidx_buffer), 0);
for (auto& batch : dmat->GetBatches<EllpackPage>(batch_param_)) {
page_->Compact(batch_param_.gpu_id, batch.Impl(), sample_row_index_);
}
return {sample_rows, page_.get(), dh::ToSpan(gpair_)};
}
GradientBasedSampler::GradientBasedSampler(EllpackPageImpl* page,
size_t n_rows,
const BatchParam& batch_param,
float subsample,
int sampling_method) {
monitor_.Init("gradient_based_sampler");
bool is_sampling = subsample < 1.0;
bool is_external_memory = page->matrix.n_rows != n_rows;
if (is_sampling) {
switch (sampling_method) {
case TrainParam::kUniform:
if (is_external_memory) {
strategy_.reset(new ExternalMemoryUniformSampling(page, n_rows, batch_param, subsample));
} else {
strategy_.reset(new UniformSampling(page, subsample));
}
break;
case TrainParam::kGradientBased:
if (is_external_memory) {
strategy_.reset(
new ExternalMemoryGradientBasedSampling(page, n_rows, batch_param, subsample));
} else {
strategy_.reset(new GradientBasedSampling(page, n_rows, batch_param, subsample));
}
break;
default:LOG(FATAL) << "unknown sampling method";
}
} else {
if (is_external_memory) {
strategy_.reset(new ExternalMemoryNoSampling(page, n_rows, batch_param));
} else {
strategy_.reset(new NoSampling(page));
}
}
}
// Sample a DMatrix based on the given gradient pairs.
GradientBasedSample GradientBasedSampler::Sample(common::Span<GradientPair> gpair,
DMatrix* dmat) {
monitor_.StartCuda("Sample");
GradientBasedSample sample = strategy_->Sample(gpair, dmat);
monitor_.StopCuda("Sample");
return sample;
}
size_t GradientBasedSampler::CalculateThresholdIndex(common::Span<GradientPair> gpair,
common::Span<float> threshold,
common::Span<float> grad_sum,
size_t sample_rows) {
thrust::fill(dh::tend(threshold) - 1, dh::tend(threshold), std::numeric_limits<float>::max());
thrust::transform(dh::tbegin(gpair), dh::tend(gpair),
dh::tbegin(threshold),
CombineGradientPair());
thrust::sort(dh::tbegin(threshold), dh::tend(threshold) - 1);
thrust::inclusive_scan(dh::tbegin(threshold), dh::tend(threshold) - 1, dh::tbegin(grad_sum));
thrust::transform(dh::tbegin(grad_sum), dh::tend(grad_sum),
thrust::counting_iterator<size_t>(0),
dh::tbegin(grad_sum),
SampleRateDelta(threshold, gpair.size(), sample_rows));
thrust::device_ptr<float> min = thrust::min_element(dh::tbegin(grad_sum), dh::tend(grad_sum));
return thrust::distance(dh::tbegin(grad_sum), min) + 1;
}
}; // namespace tree
}; // namespace xgboost