xgboost/tests/python-gpu/test_gpu_pickling.py
2020-04-26 10:00:57 +08:00

171 lines
4.9 KiB
Python

'''Test model IO with pickle.'''
import pickle
import unittest
import numpy as np
import subprocess
import os
import json
import pytest
import xgboost as xgb
from xgboost import XGBClassifier
model_path = './model.pkl'
def build_dataset():
N = 10
x = np.linspace(0, N*N, N*N)
x = x.reshape((N, N))
y = np.linspace(0, N, N)
return x, y
def save_pickle(bst, path):
with open(path, 'wb') as fd:
pickle.dump(bst, fd)
def load_pickle(path):
with open(path, 'rb') as fd:
bst = pickle.load(fd)
return bst
class TestPickling(unittest.TestCase):
args_template = [
"pytest",
"--verbose",
"-s",
"--fulltrace"]
def test_pickling(self):
x, y = build_dataset()
train_x = xgb.DMatrix(x, label=y)
param = {'tree_method': 'gpu_hist',
'verbosity': 1}
bst = xgb.train(param, train_x)
save_pickle(bst, model_path)
args = [
"pytest", "--verbose", "-s", "--fulltrace",
"./tests/python-gpu/load_pickle.py::TestLoadPickle::test_load_pkl"
]
command = ''
for arg in args:
command += arg
command += ' '
cuda_environment = {'CUDA_VISIBLE_DEVICES': '-1'}
env = os.environ.copy()
# Passing new_environment directly to `env' argument results
# in failure on Windows:
# Fatal Python error: _Py_HashRandomization_Init: failed to
# get random numbers to initialize Python
env.update(cuda_environment)
# Load model in a CPU only environment.
status = subprocess.call(command, env=env, shell=True)
assert status == 0
os.remove(model_path)
@pytest.mark.mgpu
def test_wrap_gpu_id(self):
X, y = build_dataset()
dtrain = xgb.DMatrix(X, y)
bst = xgb.train({'tree_method': 'gpu_hist',
'gpu_id': 1},
dtrain, num_boost_round=6)
model_path = 'model.pkl'
save_pickle(bst, model_path)
cuda_environment = {'CUDA_VISIBLE_DEVICES': '0'}
env = os.environ.copy()
env.update(cuda_environment)
args = self.args_template.copy()
args.append(
"./tests/python-gpu/"
"load_pickle.py::TestLoadPickle::test_wrap_gpu_id"
)
status = subprocess.call(args, env=env)
assert status == 0
os.remove(model_path)
def test_pickled_predictor(self):
x, y = build_dataset()
train_x = xgb.DMatrix(x, label=y)
param = {'tree_method': 'gpu_hist',
'verbosity': 1, 'predictor': 'gpu_predictor'}
bst = xgb.train(param, train_x)
config = json.loads(bst.save_config())
assert config['learner']['gradient_booster']['gbtree_train_param'][
'predictor'] == 'gpu_predictor'
save_pickle(bst, model_path)
args = self.args_template.copy()
args.append(
"./tests/python-gpu/"
"load_pickle.py::TestLoadPickle::test_predictor_type_is_auto")
cuda_environment = {'CUDA_VISIBLE_DEVICES': '-1'}
env = os.environ.copy()
env.update(cuda_environment)
# Load model in a CPU only environment.
status = subprocess.call(args, env=env)
assert status == 0
args = self.args_template.copy()
args.append(
"./tests/python-gpu/"
"load_pickle.py::TestLoadPickle::test_predictor_type_is_gpu")
# Load in environment that has GPU.
env = os.environ.copy()
assert 'CUDA_VISIBLE_DEVICES' not in env.keys()
status = subprocess.call(args, env=env)
assert status == 0
os.remove(model_path)
def test_predict_sklearn_pickle(self):
x, y = build_dataset()
kwargs = {'tree_method': 'gpu_hist',
'predictor': 'gpu_predictor',
'objective': 'binary:logistic',
'n_estimators': 10}
model = XGBClassifier(**kwargs)
model.fit(x, y)
save_pickle(model, "model.pkl")
del model
# load model
model: xgb.XGBClassifier = load_pickle("model.pkl")
os.remove("model.pkl")
gpu_pred = model.predict(x, output_margin=True)
# Switch to CPU predictor
bst = model.get_booster()
bst.set_param({'predictor': 'cpu_predictor'})
cpu_pred = model.predict(x, output_margin=True)
np.testing.assert_allclose(cpu_pred, gpu_pred, rtol=1e-5)
def test_training_on_cpu_only_env(self):
cuda_environment = {'CUDA_VISIBLE_DEVICES': '-1'}
env = os.environ.copy()
env.update(cuda_environment)
args = self.args_template.copy()
args.append(
"./tests/python-gpu/"
"load_pickle.py::TestLoadPickle::test_training_on_cpu_only_env")
status = subprocess.call(args, env=env)
assert status == 0