xgboost/R-package/R/xgb.dump.R
unknown 0052b193cf Update lib version dependencies (for DiagrammeR mainly)
Fix @export tag in each R file (for Roxygen 5, otherwise it doesn't work anymore)
Regerate Roxygen doc
2015-11-07 21:01:28 +01:00

71 lines
2.9 KiB
R

#' Save xgboost model to text file
#'
#' Save a xgboost model to text file. Could be parsed later.
#'
#' @importFrom magrittr %>%
#' @importFrom stringr str_replace
#' @importFrom data.table fread
#' @importFrom data.table :=
#' @importFrom data.table setnames
#' @param model the model object.
#' @param fname the name of the text file where to save the model text dump. If not provided or set to \code{NULL} the function will return the model as a \code{character} vector.
#' @param fmap feature map file representing the type of feature.
#' Detailed description could be found at
#' \url{https://github.com/dmlc/xgboost/wiki/Binary-Classification#dump-model}.
#' See demo/ for walkthrough example in R, and
#' \url{https://github.com/dmlc/xgboost/blob/master/demo/data/featmap.txt}
#' for example Format.
#' @param with.stats whether dump statistics of splits
#' When this option is on, the model dump comes with two additional statistics:
#' gain is the approximate loss function gain we get in each split;
#' cover is the sum of second order gradient in each node.
#'
#' @return
#' if fname is not provided or set to \code{NULL} the function will return the model as a \code{character} vector. Otherwise it will return \code{TRUE}.
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#' train <- agaricus.train
#' test <- agaricus.test
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
#' eta = 1, nthread = 2, nround = 2,objective = "binary:logistic")
#' # save the model in file 'xgb.model.dump'
#' xgb.dump(bst, 'xgb.model.dump', with.stats = TRUE)
#'
#' # print the model without saving it to a file
#' print(xgb.dump(bst))
#' @export
xgb.dump <- function(model = NULL, fname = NULL, fmap = "", with.stats=FALSE) {
if (class(model) != "xgb.Booster") {
stop("model: argument must be type xgb.Booster")
} else {
model <- xgb.Booster.check(model)
}
if (!(class(fname) %in% c("character", "NULL") && length(fname) <= 1)) {
stop("fname: argument must be type character (when provided)")
}
if (!(class(fmap) %in% c("character", "NULL") && length(fname) <= 1)) {
stop("fmap: argument must be type character (when provided)")
}
longString <- .Call("XGBoosterDumpModel_R", model$handle, fmap, as.integer(with.stats), PACKAGE = "xgboost")
dt <- fread(paste(longString, collapse = ""), sep = "\n", header = F)
setnames(dt, "Lines")
if(is.null(fname)) {
result <- dt[Lines != "0"][, Lines := str_replace(Lines, "^\t+", "")][Lines != ""][, paste(Lines)]
return(result)
} else {
result <- dt[Lines != "0"][Lines != ""][, paste(Lines)] %>% writeLines(fname)
return(TRUE)
}
}
# Avoid error messages during CRAN check.
# The reason is that these variables are never declared
# They are mainly column names inferred by Data.table...
globalVariables(c("Lines", "."))