xgboost/src/objective/lambdarank_obj.h
2023-04-28 02:39:12 +08:00

280 lines
12 KiB
C++

/**
* Copyright 2023, XGBoost contributors
*
* Vocabulary explanation:
*
* There are two different lists we need to handle in the objective, first is the list of
* labels (relevance degree) provided by the user. Its order has no particular meaning
* when bias estimation is NOT used. Another one is generated by our model, sorted index
* based on prediction scores. `rank_high` refers to the position index of the model rank
* list that is higher than `rank_low`, while `idx_high` refers to where does the
* `rank_high` sample comes from. Simply put, `rank_high` indexes into the rank list
* obtained from the model, while `idx_high` indexes into the user provided sample list.
*/
#ifndef XGBOOST_OBJECTIVE_LAMBDARANK_OBJ_H_
#define XGBOOST_OBJECTIVE_LAMBDARANK_OBJ_H_
#include <algorithm> // for min, max
#include <cassert> // for assert
#include <cmath> // for log, abs
#include <cstddef> // for size_t
#include <functional> // for greater
#include <memory> // for shared_ptr
#include <random> // for minstd_rand, uniform_int_distribution
#include <vector> // for vector
#include "../common/algorithm.h" // for ArgSort
#include "../common/math.h" // for Sigmoid
#include "../common/ranking_utils.h" // for CalcDCGGain
#include "../common/transform_iterator.h" // for MakeIndexTransformIter
#include "xgboost/base.h" // for GradientPair, XGBOOST_DEVICE, kRtEps
#include "xgboost/context.h" // for Context
#include "xgboost/data.h" // for MetaInfo
#include "xgboost/host_device_vector.h" // for HostDeviceVector
#include "xgboost/linalg.h" // for VectorView, Vector
#include "xgboost/logging.h" // for CHECK_EQ
#include "xgboost/span.h" // for Span
namespace xgboost::obj {
double constexpr Eps64() { return 1e-16; }
template <bool exp>
XGBOOST_DEVICE double DeltaNDCG(float y_high, float y_low, std::size_t rank_high,
std::size_t rank_low, double inv_IDCG,
common::Span<double const> discount) {
// Use rank_high instead of idx_high as we are calculating discount based on ranks
// provided by the model.
double gain_high = exp ? ltr::CalcDCGGain(y_high) : y_high;
double discount_high = discount[rank_high];
double gain_low = exp ? ltr::CalcDCGGain(y_low) : y_low;
double discount_low = discount[rank_low];
double original = gain_high * discount_high + gain_low * discount_low;
double changed = gain_low * discount_high + gain_high * discount_low;
double delta_NDCG = (original - changed) * inv_IDCG;
assert(delta_NDCG >= -1.0);
assert(delta_NDCG <= 1.0);
return delta_NDCG;
}
XGBOOST_DEVICE inline double DeltaMAP(float y_high, float y_low, std::size_t rank_high,
std::size_t rank_low, common::Span<double const> n_rel,
common::Span<double const> acc) {
double r_h = static_cast<double>(rank_high) + 1.0;
double r_l = static_cast<double>(rank_low) + 1.0;
double delta{0.0};
double n_total_relevances = n_rel.back();
assert(n_total_relevances > 0.0);
auto m = n_rel[rank_low];
double n = n_rel[rank_high];
if (y_high < y_low) {
auto a = m / r_l - (n + 1.0) / r_h;
auto b = acc[rank_low - 1] - acc[rank_high];
delta = (a - b) / n_total_relevances;
} else {
auto a = n / r_h - m / r_l;
auto b = acc[rank_low - 1] - acc[rank_high];
delta = (a + b) / n_total_relevances;
}
return delta;
}
template <bool unbiased, typename Delta>
XGBOOST_DEVICE GradientPair
LambdaGrad(linalg::VectorView<float const> labels, common::Span<float const> predts,
common::Span<size_t const> sorted_idx,
std::size_t rank_high, // higher index on the model rank list
std::size_t rank_low, // lower index on the model rank list
Delta delta, // function to calculate delta score
linalg::VectorView<double const> t_plus, // input bias ratio
linalg::VectorView<double const> t_minus, // input bias ratio
double* p_cost) {
assert(sorted_idx.size() > 0 && "Empty sorted idx for a group.");
std::size_t idx_high = sorted_idx[rank_high];
std::size_t idx_low = sorted_idx[rank_low];
if (labels(idx_high) == labels(idx_low)) {
*p_cost = 0;
return {0.0f, 0.0f};
}
auto best_score = predts[sorted_idx.front()];
auto worst_score = predts[sorted_idx.back()];
auto y_high = labels(idx_high);
float s_high = predts[idx_high];
auto y_low = labels(idx_low);
float s_low = predts[idx_low];
// Use double whenever possible as we are working on the exp space.
double delta_score = std::abs(s_high - s_low);
double const sigmoid = common::Sigmoid(s_high - s_low);
// Change in metric score like \delta NDCG or \delta MAP
double delta_metric = std::abs(delta(y_high, y_low, rank_high, rank_low));
if (best_score != worst_score) {
delta_metric /= (delta_score + 0.01);
}
if (unbiased) {
*p_cost = std::log(1.0 / (1.0 - sigmoid)) * delta_metric;
}
auto lambda_ij = (sigmoid - 1.0) * delta_metric;
auto hessian_ij = std::max(sigmoid * (1.0 - sigmoid), Eps64()) * delta_metric * 2.0;
auto k = t_plus.Size();
assert(t_minus.Size() == k && "Invalid size of position bias");
// We need to skip samples that exceed the maximum number of tracked positions, and
// samples that have low probability and might bring us floating point issues.
if (unbiased && idx_high < k && idx_low < k && t_minus(idx_low) >= Eps64() &&
t_plus(idx_high) >= Eps64()) {
// The index should be ranks[idx_low], since we assume label is sorted, this reduces
// to `idx_low`, which represents the position on the input list, as explained in the
// file header.
lambda_ij /= (t_plus(idx_high) * t_minus(idx_low));
hessian_ij /= (t_plus(idx_high) * t_minus(idx_low));
}
auto pg = GradientPair{static_cast<float>(lambda_ij), static_cast<float>(hessian_ij)};
return pg;
}
XGBOOST_DEVICE inline GradientPair Repulse(GradientPair pg) {
auto ng = GradientPair{-pg.GetGrad(), pg.GetHess()};
return ng;
}
namespace cuda_impl {
void LambdaRankGetGradientNDCG(Context const* ctx, std::int32_t iter,
HostDeviceVector<float> const& preds, MetaInfo const& info,
std::shared_ptr<ltr::NDCGCache> p_cache,
linalg::VectorView<double const> t_plus, // input bias ratio
linalg::VectorView<double const> t_minus, // input bias ratio
linalg::VectorView<double> li, linalg::VectorView<double> lj,
HostDeviceVector<GradientPair>* out_gpair);
/**
* \brief Generate statistic for MAP used for calculating \Delta Z in lambda mart.
*/
void MAPStat(Context const* ctx, MetaInfo const& info, common::Span<std::size_t const> d_rank_idx,
std::shared_ptr<ltr::MAPCache> p_cache);
void LambdaRankGetGradientMAP(Context const* ctx, std::int32_t iter,
HostDeviceVector<float> const& predt, MetaInfo const& info,
std::shared_ptr<ltr::MAPCache> p_cache,
linalg::VectorView<double const> t_plus, // input bias ratio
linalg::VectorView<double const> t_minus, // input bias ratio
linalg::VectorView<double> li, linalg::VectorView<double> lj,
HostDeviceVector<GradientPair>* out_gpair);
void LambdaRankGetGradientPairwise(Context const* ctx, std::int32_t iter,
HostDeviceVector<float> const& predt, const MetaInfo& info,
std::shared_ptr<ltr::RankingCache> p_cache,
linalg::VectorView<double const> ti_plus, // input bias ratio
linalg::VectorView<double const> tj_minus, // input bias ratio
linalg::VectorView<double> li, linalg::VectorView<double> lj,
HostDeviceVector<GradientPair>* out_gpair);
void LambdaRankUpdatePositionBias(Context const* ctx, linalg::VectorView<double const> li_full,
linalg::VectorView<double const> lj_full,
linalg::Vector<double>* p_ti_plus,
linalg::Vector<double>* p_tj_minus, linalg::Vector<double>* p_li,
linalg::Vector<double>* p_lj,
std::shared_ptr<ltr::RankingCache> p_cache);
} // namespace cuda_impl
namespace cpu_impl {
/**
* \brief Generate statistic for MAP used for calculating \Delta Z in lambda mart.
*
* \param label Ground truth relevance label.
* \param rank_idx Sorted index of prediction.
* \param p_cache An initialized MAPCache.
*/
void MAPStat(Context const* ctx, linalg::VectorView<float const> label,
common::Span<std::size_t const> rank_idx, std::shared_ptr<ltr::MAPCache> p_cache);
} // namespace cpu_impl
/**
* \param Construct pairs on CPU
*
* \tparam Op Functor for upgrading a pair of gradients.
*
* \param ctx The global context.
* \param iter The boosting iteration.
* \param cache ltr cache.
* \param g The current query group
* \param g_label label The labels for the current query group
* \param g_rank Sorted index of model scores for the current query group.
* \param op A callable that accepts two index for a pair of documents. The index is for
* the ranked list (labels sorted according to model scores).
*/
template <typename Op>
void MakePairs(Context const* ctx, std::int32_t iter,
std::shared_ptr<ltr::RankingCache> const cache, bst_group_t g,
linalg::VectorView<float const> g_label, common::Span<std::size_t const> g_rank,
Op op) {
auto group_ptr = cache->DataGroupPtr(ctx);
ltr::position_t cnt = group_ptr[g + 1] - group_ptr[g];
if (cache->Param().HasTruncation()) {
for (std::size_t i = 0; i < std::min(cnt, cache->Param().NumPair()); ++i) {
for (std::size_t j = i + 1; j < cnt; ++j) {
op(i, j);
}
}
} else {
CHECK_EQ(g_rank.size(), g_label.Size());
std::minstd_rand rnd(iter);
rnd.discard(g); // fixme(jiamingy): honor the global seed
// sort label according to the rank list
auto it = common::MakeIndexTransformIter(
[&g_rank, &g_label](std::size_t idx) { return g_label(g_rank[idx]); });
std::vector<std::size_t> y_sorted_idx =
common::ArgSort<std::size_t>(ctx, it, it + cnt, std::greater<>{});
// permutation iterator to get the original label
auto rev_it = common::MakeIndexTransformIter(
[&](std::size_t idx) { return g_label(g_rank[y_sorted_idx[idx]]); });
for (std::size_t i = 0; i < cnt;) {
std::size_t j = i + 1;
// find the bucket boundary
while (j < cnt && rev_it[i] == rev_it[j]) {
++j;
}
// Bucket [i,j), construct n_samples pairs for each sample inside the bucket with
// another sample outside the bucket.
//
// n elements left to the bucket, and n elements right to the bucket
std::size_t n_lefts = i, n_rights = static_cast<std::size_t>(cnt - j);
if (n_lefts + n_rights == 0) {
i = j;
continue;
}
auto n_samples = cache->Param().NumPair();
// for each pair specifed by the user
while (n_samples--) {
// for each sample in the bucket
for (std::size_t pair_idx = i; pair_idx < j; ++pair_idx) {
std::size_t ridx = std::uniform_int_distribution<std::size_t>(
static_cast<std::size_t>(0), n_lefts + n_rights - 1)(rnd);
if (ridx >= n_lefts) {
ridx = ridx - i + j; // shift to the right of the bucket
}
// index that points to the rank list.
auto idx0 = y_sorted_idx[pair_idx];
auto idx1 = y_sorted_idx[ridx];
op(idx0, idx1);
}
}
i = j;
}
}
}
} // namespace xgboost::obj
#endif // XGBOOST_OBJECTIVE_LAMBDARANK_OBJ_H_