xgboost/tests/cpp/tree/test_histmaker.cc
Jiaming Yuan 6deaec8027
Pass obj info by reference instead of by value. (#8889)
- Pass obj info into tree updater as const pointer.

This way we don't have to initialize the learner model param before configuring gbm, hence
breaking up the dependency of configurations.
2023-03-11 01:38:28 +08:00

128 lines
4.0 KiB
C++

/**
* Copyright 2019-2023 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/tree_model.h>
#include <xgboost/tree_updater.h>
#include "../../../src/tree/param.h" // for TrainParam
#include "../helpers.h"
namespace xgboost::tree {
std::shared_ptr<DMatrix> GenerateDMatrix(std::size_t rows, std::size_t cols){
return RandomDataGenerator{rows, cols, 0.6f}.Seed(3).GenerateDMatrix();
}
std::unique_ptr<HostDeviceVector<GradientPair>> GenerateGradients(std::size_t rows) {
auto p_gradients = std::make_unique<HostDeviceVector<GradientPair>>(rows);
auto& h_gradients = p_gradients->HostVector();
xgboost::SimpleLCG gen;
xgboost::SimpleRealUniformDistribution<bst_float> dist(0.0f, 1.0f);
for (std::size_t i = 0; i < rows; ++i) {
auto grad = dist(&gen);
auto hess = dist(&gen);
h_gradients[i] = GradientPair{grad, hess};
}
return p_gradients;
}
TEST(GrowHistMaker, InteractionConstraint)
{
auto constexpr kRows = 32;
auto constexpr kCols = 16;
auto p_dmat = GenerateDMatrix(kRows, kCols);
auto p_gradients = GenerateGradients(kRows);
Context ctx;
ObjInfo task{ObjInfo::kRegression};
{
// With constraints
RegTree tree;
tree.param.num_feature = kCols;
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_histmaker", &ctx, &task)};
TrainParam param;
param.UpdateAllowUnknown(
Args{{"interaction_constraints", "[[0, 1]]"}, {"num_feature", std::to_string(kCols)}});
std::vector<HostDeviceVector<bst_node_t>> position(1);
updater->Update(&param, p_gradients.get(), p_dmat.get(), position, {&tree});
ASSERT_EQ(tree.NumExtraNodes(), 4);
ASSERT_EQ(tree[0].SplitIndex(), 1);
ASSERT_EQ(tree[tree[0].LeftChild()].SplitIndex(), 0);
ASSERT_EQ(tree[tree[0].RightChild()].SplitIndex(), 0);
}
{
// Without constraints
RegTree tree;
tree.param.num_feature = kCols;
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_histmaker", &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
TrainParam param;
param.Init(Args{});
updater->Update(&param, p_gradients.get(), p_dmat.get(), position, {&tree});
ASSERT_EQ(tree.NumExtraNodes(), 10);
ASSERT_EQ(tree[0].SplitIndex(), 1);
ASSERT_NE(tree[tree[0].LeftChild()].SplitIndex(), 0);
ASSERT_NE(tree[tree[0].RightChild()].SplitIndex(), 0);
}
}
namespace {
void TestColumnSplit(int32_t rows, int32_t cols, RegTree const& expected_tree) {
auto p_dmat = GenerateDMatrix(rows, cols);
auto p_gradients = GenerateGradients(rows);
Context ctx;
ObjInfo task{ObjInfo::kRegression};
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_histmaker", &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
std::unique_ptr<DMatrix> sliced{
p_dmat->SliceCol(collective::GetWorldSize(), collective::GetRank())};
RegTree tree;
tree.param.num_feature = cols;
TrainParam param;
param.Init(Args{});
updater->Update(&param, p_gradients.get(), sliced.get(), position, {&tree});
EXPECT_EQ(tree.NumExtraNodes(), 10);
EXPECT_EQ(tree[0].SplitIndex(), 1);
EXPECT_NE(tree[tree[0].LeftChild()].SplitIndex(), 0);
EXPECT_NE(tree[tree[0].RightChild()].SplitIndex(), 0);
EXPECT_EQ(tree, expected_tree);
}
} // anonymous namespace
TEST(GrowHistMaker, ColumnSplit) {
auto constexpr kRows = 32;
auto constexpr kCols = 16;
RegTree expected_tree;
expected_tree.param.num_feature = kCols;
ObjInfo task{ObjInfo::kRegression};
{
auto p_dmat = GenerateDMatrix(kRows, kCols);
auto p_gradients = GenerateGradients(kRows);
Context ctx;
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_histmaker", &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
TrainParam param;
param.Init(Args{});
updater->Update(&param, p_gradients.get(), p_dmat.get(), position, {&expected_tree});
}
auto constexpr kWorldSize = 2;
RunWithInMemoryCommunicator(kWorldSize, TestColumnSplit, kRows, kCols, std::cref(expected_tree));
}
} // namespace xgboost::tree