xgboost/old_src/learner/evaluation.h
2016-01-16 10:24:00 -08:00

102 lines
3.3 KiB
C++

/*!
* Copyright 2014 by Contributors
* \file evaluation.h
* \brief interface of evaluation function supported in xgboost
* \author Tianqi Chen, Kailong Chen
*/
#ifndef XGBOOST_LEARNER_EVALUATION_H_
#define XGBOOST_LEARNER_EVALUATION_H_
#include <string>
#include <vector>
#include <cstdio>
#include "../utils/utils.h"
#include "./dmatrix.h"
namespace xgboost {
namespace learner {
/*! \brief evaluator that evaluates the loss metrics */
struct IEvaluator{
/*!
* \brief evaluate a specific metric
* \param preds prediction
* \param info information, including label etc.
* \param distributed whether a call to Allreduce is needed to gather
* the average statistics across all the node,
* this is only supported by some metrics
*/
virtual float Eval(const std::vector<float> &preds,
const MetaInfo &info,
bool distributed = false) const = 0;
/*! \return name of metric */
virtual const char *Name(void) const = 0;
/*! \brief virtual destructor */
virtual ~IEvaluator(void) {}
};
} // namespace learner
} // namespace xgboost
// include implementations of evaluation functions
#include "evaluation-inl.hpp"
// factory function
namespace xgboost {
namespace learner {
inline IEvaluator* CreateEvaluator(const char *name) {
using namespace std;
if (!strcmp(name, "rmse")) return new EvalRMSE();
if (!strcmp(name, "error")) return new EvalError();
if (!strcmp(name, "merror")) return new EvalMatchError();
if (!strcmp(name, "logloss")) return new EvalLogLoss();
if (!strcmp(name, "mlogloss")) return new EvalMultiLogLoss();
if (!strcmp(name, "poisson-nloglik")) return new EvalPoissionNegLogLik();
if (!strcmp(name, "auc")) return new EvalAuc();
if (!strncmp(name, "ams@", 4)) return new EvalAMS(name);
if (!strncmp(name, "pre@", 4)) return new EvalPrecision(name);
if (!strncmp(name, "pratio@", 7)) return new EvalPrecisionRatio(name);
if (!strncmp(name, "map", 3)) return new EvalMAP(name);
if (!strncmp(name, "ndcg", 4)) return new EvalNDCG(name);
if (!strncmp(name, "ct-", 3)) return new EvalCTest(CreateEvaluator(name+3), name);
utils::Error("unknown evaluation metric type: %s", name);
return NULL;
}
/*! \brief a set of evaluators */
class EvalSet{
public:
inline void AddEval(const char *name) {
using namespace std;
for (size_t i = 0; i < evals_.size(); ++i) {
if (!strcmp(name, evals_[i]->Name())) return;
}
evals_.push_back(CreateEvaluator(name));
}
~EvalSet(void) {
for (size_t i = 0; i < evals_.size(); ++i) {
delete evals_[i];
}
}
inline std::string Eval(const char *evname,
const std::vector<float> &preds,
const MetaInfo &info,
bool distributed = false) {
std::string result = "";
for (size_t i = 0; i < evals_.size(); ++i) {
float res = evals_[i]->Eval(preds, info, distributed);
char tmp[1024];
utils::SPrintf(tmp, sizeof(tmp), "\t%s-%s:%f", evname, evals_[i]->Name(), res);
result += tmp;
}
return result;
}
inline size_t Size(void) const {
return evals_.size();
}
private:
std::vector<const IEvaluator*> evals_;
};
} // namespace learner
} // namespace xgboost
#endif // XGBOOST_LEARNER_EVALUATION_H_