* Revise documents after recent refactoring and cat support. * Add tests for behavior of max_depth and max_leaves.
158 lines
4.5 KiB
C++
158 lines
4.5 KiB
C++
/*!
|
|
* Copyright 2021 XGBoost contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/base.h>
|
|
#include <xgboost/tree_model.h>
|
|
#include "../helpers.h"
|
|
|
|
namespace xgboost {
|
|
class TestGrowPolicy : public ::testing::Test {
|
|
protected:
|
|
std::shared_ptr<DMatrix> Xy_;
|
|
size_t n_samples_ = 4096, n_features_ = 13;
|
|
float sparsity_ = 0.5;
|
|
|
|
protected:
|
|
void SetUp() override {
|
|
Xy_ =
|
|
RandomDataGenerator{n_samples_, n_features_, sparsity_}.GenerateDMatrix(
|
|
true);
|
|
}
|
|
|
|
std::unique_ptr<Learner> TrainOneIter(std::string tree_method, std::string policy,
|
|
int32_t max_leaves, int32_t max_depth) {
|
|
std::unique_ptr<Learner> learner{Learner::Create({this->Xy_})};
|
|
learner->SetParam("tree_method", tree_method);
|
|
if (max_leaves >= 0) {
|
|
learner->SetParam("max_leaves", std::to_string(max_leaves));
|
|
}
|
|
if (max_depth >= 0) {
|
|
learner->SetParam("max_depth", std::to_string(max_depth));
|
|
}
|
|
learner->SetParam("grow_policy", policy);
|
|
|
|
auto check_max_leave = [&]() {
|
|
Json model{Object{}};
|
|
learner->SaveModel(&model);
|
|
auto j_tree = model["learner"]["gradient_booster"]["model"]["trees"][0];
|
|
RegTree tree;
|
|
tree.LoadModel(j_tree);
|
|
CHECK_LE(tree.GetNumLeaves(), max_leaves);
|
|
};
|
|
|
|
auto check_max_depth = [&](int32_t sol) {
|
|
Json model{Object{}};
|
|
learner->SaveModel(&model);
|
|
|
|
auto j_tree = model["learner"]["gradient_booster"]["model"]["trees"][0];
|
|
RegTree tree;
|
|
tree.LoadModel(j_tree);
|
|
bst_node_t depth = 0;
|
|
tree.WalkTree([&](bst_node_t nidx) {
|
|
depth = std::max(tree.GetDepth(nidx), depth);
|
|
return true;
|
|
});
|
|
if (sol > -1) {
|
|
CHECK_EQ(depth, sol);
|
|
} else {
|
|
CHECK_EQ(depth, max_depth) << "tree method: " << tree_method << " policy: " << policy
|
|
<< " leaves:" << max_leaves << ", depth:" << max_depth;
|
|
}
|
|
};
|
|
|
|
if (max_leaves == 0 && max_depth == 0) {
|
|
// unconstrainted
|
|
if (tree_method != "gpu_hist") {
|
|
// GPU pre-allocates for all nodes.
|
|
learner->UpdateOneIter(0, Xy_);
|
|
}
|
|
} else if (max_leaves > 0 && max_depth == 0) {
|
|
learner->UpdateOneIter(0, Xy_);
|
|
check_max_leave();
|
|
} else if (max_leaves == 0 && max_depth > 0) {
|
|
learner->UpdateOneIter(0, Xy_);
|
|
check_max_depth(-1);
|
|
} else if (max_leaves > 0 && max_depth > 0) {
|
|
learner->UpdateOneIter(0, Xy_);
|
|
check_max_leave();
|
|
check_max_depth(2);
|
|
} else if (max_leaves == -1 && max_depth == 0) {
|
|
// default max_leaves is 0, so both of them are now 0
|
|
} else {
|
|
// default parameters
|
|
learner->UpdateOneIter(0, Xy_);
|
|
}
|
|
return learner;
|
|
}
|
|
|
|
void TestCombination(std::string tree_method) {
|
|
for (auto policy : {"depthwise", "lossguide"}) {
|
|
// -1 means default
|
|
for (auto leaves : {-1, 0, 3}) {
|
|
for (auto depth : {-1, 0, 3}) {
|
|
this->TrainOneIter(tree_method, policy, leaves, depth);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestTreeGrowPolicy(std::string tree_method, std::string policy) {
|
|
{
|
|
/**
|
|
* max_leaves
|
|
*/
|
|
auto learner = this->TrainOneIter(tree_method, policy, 16, -1);
|
|
Json model{Object{}};
|
|
learner->SaveModel(&model);
|
|
|
|
auto j_tree = model["learner"]["gradient_booster"]["model"]["trees"][0];
|
|
RegTree tree;
|
|
tree.LoadModel(j_tree);
|
|
ASSERT_EQ(tree.GetNumLeaves(), 16);
|
|
}
|
|
{
|
|
/**
|
|
* max_depth
|
|
*/
|
|
auto learner = this->TrainOneIter(tree_method, policy, -1, 3);
|
|
Json model{Object{}};
|
|
learner->SaveModel(&model);
|
|
|
|
auto j_tree = model["learner"]["gradient_booster"]["model"]["trees"][0];
|
|
RegTree tree;
|
|
tree.LoadModel(j_tree);
|
|
bst_node_t depth = 0;
|
|
tree.WalkTree([&](bst_node_t nidx) {
|
|
depth = std::max(tree.GetDepth(nidx), depth);
|
|
return true;
|
|
});
|
|
ASSERT_EQ(depth, 3);
|
|
}
|
|
}
|
|
};
|
|
|
|
TEST_F(TestGrowPolicy, Approx) {
|
|
this->TestTreeGrowPolicy("approx", "depthwise");
|
|
this->TestTreeGrowPolicy("approx", "lossguide");
|
|
|
|
this->TestCombination("approx");
|
|
}
|
|
|
|
TEST_F(TestGrowPolicy, Hist) {
|
|
this->TestTreeGrowPolicy("hist", "depthwise");
|
|
this->TestTreeGrowPolicy("hist", "lossguide");
|
|
|
|
this->TestCombination("hist");
|
|
}
|
|
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
TEST_F(TestGrowPolicy, GpuHist) {
|
|
this->TestTreeGrowPolicy("gpu_hist", "depthwise");
|
|
this->TestTreeGrowPolicy("gpu_hist", "lossguide");
|
|
|
|
this->TestCombination("gpu_hist");
|
|
}
|
|
#endif // defined(XGBOOST_USE_CUDA)
|
|
} // namespace xgboost
|