- Use the `linalg::Matrix` for storing gradients. - New API for the custom objective. - Custom objective for multi-class/multi-target is now required to return the correct shape. - Custom objective for Python can accept arrays with any strides. (row-major, column-major)
136 lines
4.1 KiB
Python
136 lines
4.1 KiB
Python
"""
|
|
A demo for multi-output regression
|
|
==================================
|
|
|
|
The demo is adopted from scikit-learn:
|
|
|
|
https://scikit-learn.org/stable/auto_examples/ensemble/plot_random_forest_regression_multioutput.html#sphx-glr-auto-examples-ensemble-plot-random-forest-regression-multioutput-py
|
|
|
|
See :doc:`/tutorials/multioutput` for more information.
|
|
|
|
.. note::
|
|
|
|
The feature is experimental. For the `multi_output_tree` strategy, many features are
|
|
missing.
|
|
|
|
"""
|
|
|
|
import argparse
|
|
from typing import Dict, List, Tuple
|
|
|
|
import numpy as np
|
|
from matplotlib import pyplot as plt
|
|
|
|
import xgboost as xgb
|
|
|
|
|
|
def plot_predt(y: np.ndarray, y_predt: np.ndarray, name: str) -> None:
|
|
s = 25
|
|
plt.scatter(y[:, 0], y[:, 1], c="navy", s=s, edgecolor="black", label="data")
|
|
plt.scatter(
|
|
y_predt[:, 0], y_predt[:, 1], c="cornflowerblue", s=s, edgecolor="black"
|
|
)
|
|
plt.xlim([-1, 2])
|
|
plt.ylim([-1, 2])
|
|
plt.show()
|
|
|
|
|
|
def gen_circle() -> Tuple[np.ndarray, np.ndarray]:
|
|
"Generate a sample dataset that y is a 2 dim circle."
|
|
rng = np.random.RandomState(1994)
|
|
X = np.sort(200 * rng.rand(100, 1) - 100, axis=0)
|
|
y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T
|
|
y[::5, :] += 0.5 - rng.rand(20, 2)
|
|
y = y - y.min()
|
|
y = y / y.max()
|
|
return X, y
|
|
|
|
|
|
def rmse_model(plot_result: bool, strategy: str) -> None:
|
|
"""Draw a circle with 2-dim coordinate as target variables."""
|
|
X, y = gen_circle()
|
|
# Train a regressor on it
|
|
reg = xgb.XGBRegressor(
|
|
tree_method="hist",
|
|
n_estimators=128,
|
|
n_jobs=16,
|
|
max_depth=8,
|
|
multi_strategy=strategy,
|
|
subsample=0.6,
|
|
)
|
|
reg.fit(X, y, eval_set=[(X, y)])
|
|
|
|
y_predt = reg.predict(X)
|
|
if plot_result:
|
|
plot_predt(y, y_predt, "multi")
|
|
|
|
|
|
def custom_rmse_model(plot_result: bool, strategy: str) -> None:
|
|
"""Train using Python implementation of Squared Error."""
|
|
|
|
def gradient(predt: np.ndarray, dtrain: xgb.DMatrix) -> np.ndarray:
|
|
"""Compute the gradient squared error."""
|
|
y = dtrain.get_label().reshape(predt.shape)
|
|
return predt - y
|
|
|
|
def hessian(predt: np.ndarray, dtrain: xgb.DMatrix) -> np.ndarray:
|
|
"""Compute the hessian for squared error."""
|
|
return np.ones(predt.shape)
|
|
|
|
def squared_log(
|
|
predt: np.ndarray, dtrain: xgb.DMatrix
|
|
) -> Tuple[np.ndarray, np.ndarray]:
|
|
grad = gradient(predt, dtrain)
|
|
hess = hessian(predt, dtrain)
|
|
# both numpy.ndarray and cupy.ndarray works.
|
|
return grad, hess
|
|
|
|
def rmse(predt: np.ndarray, dtrain: xgb.DMatrix) -> Tuple[str, float]:
|
|
y = dtrain.get_label().reshape(predt.shape)
|
|
v = np.sqrt(np.sum(np.power(y - predt, 2)))
|
|
return "PyRMSE", v
|
|
|
|
X, y = gen_circle()
|
|
Xy = xgb.DMatrix(X, y)
|
|
results: Dict[str, Dict[str, List[float]]] = {}
|
|
# Make sure the `num_target` is passed to XGBoost when custom objective is used.
|
|
# When builtin objective is used, XGBoost can figure out the number of targets
|
|
# automatically.
|
|
booster = xgb.train(
|
|
{
|
|
"tree_method": "hist",
|
|
"num_target": y.shape[1],
|
|
"multi_strategy": strategy,
|
|
},
|
|
dtrain=Xy,
|
|
num_boost_round=128,
|
|
obj=squared_log,
|
|
evals=[(Xy, "Train")],
|
|
evals_result=results,
|
|
custom_metric=rmse,
|
|
)
|
|
|
|
y_predt = booster.inplace_predict(X)
|
|
if plot_result:
|
|
plot_predt(y, y_predt, "multi")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--plot", choices=[0, 1], type=int, default=1)
|
|
args = parser.parse_args()
|
|
|
|
# Train with builtin RMSE objective
|
|
# - One model per output.
|
|
rmse_model(args.plot == 1, "one_output_per_tree")
|
|
# - One model for all outputs, this is still working in progress, many features are
|
|
# missing.
|
|
rmse_model(args.plot == 1, "multi_output_tree")
|
|
|
|
# Train with custom objective.
|
|
# - One model per output.
|
|
custom_rmse_model(args.plot == 1, "one_output_per_tree")
|
|
# - One model for all outputs, this is still working in progress, many features are
|
|
# missing.
|
|
custom_rmse_model(args.plot == 1, "multi_output_tree")
|