155 lines
6.2 KiB
C++
155 lines
6.2 KiB
C++
#ifndef _XGBOOST_REG_H_
|
|
#define _XGBOOST_REG_H_
|
|
/*!
|
|
* \file xgboost_reg.h
|
|
* \brief class for gradient boosted regression
|
|
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
|
|
*/
|
|
#include <cmath>
|
|
#include "xgboost_regdata.h"
|
|
#include "../booster/xgboost_gbmbase.h"
|
|
#include "../utils/xgboost_utils.h"
|
|
#include "../utils/xgboost_stream.h"
|
|
|
|
namespace xgboost{
|
|
namespace regression{
|
|
/*! \brief class for gradient boosted regression */
|
|
class RegBoostLearner{
|
|
public:
|
|
/*!
|
|
* \brief a regression booter associated with training and evaluating data
|
|
* \param train pointer to the training data
|
|
* \param evals array of evaluating data
|
|
* \param evname name of evaluation data, used print statistics
|
|
*/
|
|
RegBoostLearner( const DMatrix *train,
|
|
std::vector<const DMatrix *> evals,
|
|
std::vector<std::string> evname ){
|
|
this->train_ = train;
|
|
this->evals_ = evals;
|
|
this->evname_ = evname;
|
|
//TODO: assign buffer index
|
|
}
|
|
/*!
|
|
* \brief set parameters from outside
|
|
* \param name name of the parameter
|
|
* \param val value of the parameter
|
|
*/
|
|
inline void SetParam( const char *name, const char *val ){
|
|
mparam.SetParam( name, val );
|
|
base_model.SetParam( name, val );
|
|
}
|
|
/*!
|
|
* \brief initialize solver before training, called before training
|
|
* this function is reserved for solver to allocate necessary space and do other preparation
|
|
*/
|
|
inline void InitTrainer( void ){
|
|
base_model.InitTrainer();
|
|
mparam.AdjustBase();
|
|
}
|
|
/*!
|
|
* \brief load model from stream
|
|
* \param fi input stream
|
|
*/
|
|
inline void LoadModel( utils::IStream &fi ){
|
|
utils::Assert( fi.Read( &mparam, sizeof(ModelParam) ) != 0 );
|
|
base_model.LoadModel( fi );
|
|
}
|
|
/*!
|
|
* \brief save model to stream
|
|
* \param fo output stream
|
|
*/
|
|
inline void SaveModel( utils::IStream &fo ) const{
|
|
fo.Write( &mparam, sizeof(ModelParam) );
|
|
base_model.SaveModel( fo );
|
|
}
|
|
/*!
|
|
* \brief update the model for one iteration
|
|
*/
|
|
inline void UpdateOneIter( void ){
|
|
//TODO
|
|
}
|
|
/*! \brief predict the results, given data */
|
|
inline void Predict( std::vector<float> &preds, const DMatrix &data ){
|
|
//TODO
|
|
}
|
|
private:
|
|
/*! \brief training parameter for regression */
|
|
struct ModelParam{
|
|
/* \brief global bias */
|
|
float base_score;
|
|
/* \brief type of loss function */
|
|
int loss_type;
|
|
ModelParam( void ){
|
|
base_score = 0.5f;
|
|
loss_type = 0;
|
|
}
|
|
/*!
|
|
* \brief set parameters from outside
|
|
* \param name name of the parameter
|
|
* \param val value of the parameter
|
|
*/
|
|
inline void SetParam( const char *name, const char *val ){
|
|
if( !strcmp("base_score", name ) ) base_score = (float)atof( val );
|
|
if( !strcmp("loss_type", name ) ) loss_type = atoi( val );
|
|
}
|
|
/*!
|
|
* \brief adjust base_score
|
|
*/
|
|
inline void AdjustBase( void ){
|
|
if( loss_type == 1 ){
|
|
utils::Assert( base_score > 0.0f && base_score < 1.0f, "sigmoid range constrain" );
|
|
base_score = - logf( 1.0f / base_score - 1.0f );
|
|
}
|
|
}
|
|
/*!
|
|
* \brief calculate first order gradient of loss, given transformed prediction
|
|
* \param predt transformed prediction
|
|
* \param label true label
|
|
* \return first order gradient
|
|
*/
|
|
inline float FirstOrderGradient( float predt, float label ) const{
|
|
switch( loss_type ){
|
|
case 0: return predt - label;
|
|
case 1: return predt - label;
|
|
default: utils::Error("unknown loss_type"); return 0.0f;
|
|
}
|
|
}
|
|
/*!
|
|
* \brief calculate second order gradient of loss, given transformed prediction
|
|
* \param predt transformed prediction
|
|
* \param label true label
|
|
* \return second order gradient
|
|
*/
|
|
inline float SecondOrderGradient( float predt, float label ) const{
|
|
switch( loss_type ){
|
|
case 0: return 1.0f;
|
|
case 1: return predt * ( 1 - predt );
|
|
default: utils::Error("unknown loss_type"); return 0.0f;
|
|
}
|
|
}
|
|
/*!
|
|
* \brief transform the linear sum to prediction
|
|
* \param x linear sum of boosting ensemble
|
|
* \return transformed prediction
|
|
*/
|
|
inline float PredTransform( float x ){
|
|
switch( loss_type ){
|
|
case 0: return x;
|
|
case 1: return 1.0f/(1.0f + expf(-x));
|
|
default: utils::Error("unknown loss_type"); return 0.0f;
|
|
}
|
|
}
|
|
};
|
|
private:
|
|
booster::GBMBaseModel base_model;
|
|
ModelParam mparam;
|
|
const DMatrix *train_;
|
|
std::vector<const DMatrix *> evals_;
|
|
std::vector<std::string> evname_;
|
|
};
|
|
};
|
|
};
|
|
|
|
#endif
|