764 lines
25 KiB
Python

# coding: utf-8
# pylint: disable=too-many-arguments
"""Core XGBoost Library."""
from __future__ import absolute_import
import os
import sys
import ctypes
import platform
import collections
import numpy as np
import scipy.sparse
class XGBoostLibraryNotFound(Exception):
"""Error throwed by when xgboost is not found"""
pass
class XGBoostError(Exception):
"""Error throwed by xgboost trainer."""
pass
if sys.version_info[0] == 3:
# pylint: disable=invalid-name
STRING_TYPES = str,
else:
# pylint: disable=invalid-name
STRING_TYPES = basestring,
def find_lib_path():
"""Load find the path to xgboost dynamic library files.
Returns
-------
lib_path: list(string)
List of all found library path to xgboost
"""
curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
#make pythonpack hack: copy this directory one level upper for setup.py
dll_path = [curr_path, os.path.join(curr_path, '../../wrapper/')
, os.path.join(curr_path, './wrapper/')]
if os.name == 'nt':
if platform.architecture()[0] == '64bit':
dll_path.append(os.path.join(curr_path, '../../windows/x64/Release/'))
else:
dll_path.append(os.path.join(curr_path, '../../windows/Release/'))
if os.name == 'nt':
dll_path = [os.path.join(p, 'xgboost_wrapper.dll') for p in dll_path]
else:
dll_path = [os.path.join(p, 'libxgboostwrapper.so') for p in dll_path]
lib_path = [p for p in dll_path if os.path.exists(p) and os.path.isfile(p)]
if len(lib_path) == 0 and not os.environ.get('XGBOOST_BUILD_DOC', False):
raise XGBoostLibraryNotFound(
'Cannot find XGBoost Libarary in the candicate path, ' +
'did you run build.sh in root path?\n'
'List of candidates:\n' + ('\n'.join(dll_path)))
return lib_path
def _load_lib():
"""Load xgboost Library."""
lib_path = find_lib_path()
if len(lib_path) == 0:
return None
lib = ctypes.cdll.LoadLibrary(lib_path[0])
lib.XGBGetLastError.restype = ctypes.c_char_p
return lib
# load the XGBoost library globally
_LIB = _load_lib()
def _check_call(ret):
"""Check the return value of C API call
This function will raise exception when error occurs.
Wrap every API call with this function
Parameters
----------
ret : int
return value from API calls
"""
if ret != 0:
raise XGBoostError(_LIB.XGBGetLastError())
def ctypes2numpy(cptr, length, dtype):
"""Convert a ctypes pointer array to a numpy array.
"""
if not isinstance(cptr, ctypes.POINTER(ctypes.c_float)):
raise RuntimeError('expected float pointer')
res = np.zeros(length, dtype=dtype)
if not ctypes.memmove(res.ctypes.data, cptr, length * res.strides[0]):
raise RuntimeError('memmove failed')
return res
def ctypes2buffer(cptr, length):
"""Convert ctypes pointer to buffer type."""
if not isinstance(cptr, ctypes.POINTER(ctypes.c_char)):
raise RuntimeError('expected char pointer')
res = bytearray(length)
rptr = (ctypes.c_char * length).from_buffer(res)
if not ctypes.memmove(rptr, cptr, length):
raise RuntimeError('memmove failed')
return res
def c_str(string):
"""Convert a python string to cstring."""
return ctypes.c_char_p(string.encode('utf-8'))
def c_array(ctype, values):
"""Convert a python string to c array."""
return (ctype * len(values))(*values)
class DMatrix(object):
"""Data Matrix used in XGBoost.
DMatrix is a internal data structure that used by XGBoost
which is optimized for both memory efficiency and training speed.
You can construct DMatrix from numpy.arrays
"""
def __init__(self, data, label=None, missing=0.0, weight=None, silent=False):
"""
Data matrix used in XGBoost.
Parameters
----------
data : string/numpy array/scipy.sparse
Data source of DMatrix.
When data is string type, it represents the path libsvm format txt file,
or binary file that xgboost can read from.
label : list or numpy 1-D array, optional
Label of the training data.
missing : float, optional
Value in the data which needs to be present as a missing value.
weight : list or numpy 1-D array , optional
Weight for each instance.
silent : boolean, optional
Whether print messages during construction
"""
# force into void_p, mac need to pass things in as void_p
if data is None:
self.handle = None
return
if isinstance(data, STRING_TYPES):
self.handle = ctypes.c_void_p()
_check_call(_LIB.XGDMatrixCreateFromFile(c_str(data),
int(silent),
ctypes.byref(self.handle)))
elif isinstance(data, scipy.sparse.csr_matrix):
self._init_from_csr(data)
elif isinstance(data, scipy.sparse.csc_matrix):
self._init_from_csc(data)
elif isinstance(data, np.ndarray) and len(data.shape) == 2:
self._init_from_npy2d(data, missing)
else:
try:
csr = scipy.sparse.csr_matrix(data)
self._init_from_csr(csr)
except:
raise TypeError('can not intialize DMatrix from {}'.format(type(data).__name__))
if label is not None:
self.set_label(label)
if weight is not None:
self.set_weight(weight)
def _init_from_csr(self, csr):
"""
Initialize data from a CSR matrix.
"""
if len(csr.indices) != len(csr.data):
raise ValueError('length mismatch: {} vs {}'.format(len(csr.indices), len(csr.data)))
self.handle = ctypes.c_void_p()
_check_call(_LIB.XGDMatrixCreateFromCSR(c_array(ctypes.c_ulong, csr.indptr),
c_array(ctypes.c_uint, csr.indices),
c_array(ctypes.c_float, csr.data),
len(csr.indptr), len(csr.data),
ctypes.byref(self.handle)))
def _init_from_csc(self, csc):
"""
Initialize data from a CSC matrix.
"""
if len(csc.indices) != len(csc.data):
raise ValueError('length mismatch: {} vs {}'.format(len(csc.indices), len(csc.data)))
self.handle = ctypes.c_void_p()
_check_call(_LIB.XGDMatrixCreateFromCSC(c_array(ctypes.c_ulong, csc.indptr),
c_array(ctypes.c_uint, csc.indices),
c_array(ctypes.c_float, csc.data),
len(csc.indptr), len(csc.data),
ctypes.byref(self.handle)))
def _init_from_npy2d(self, mat, missing):
"""
Initialize data from a 2-D numpy matrix.
"""
data = np.array(mat.reshape(mat.size), dtype=np.float32)
self.handle = ctypes.c_void_p()
_check_call(_LIB.XGDMatrixCreateFromMat(data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
mat.shape[0], mat.shape[1],
ctypes.c_float(missing),
ctypes.byref(self.handle)))
def __del__(self):
_check_call(_LIB.XGDMatrixFree(self.handle))
def get_float_info(self, field):
"""Get float property from the DMatrix.
Parameters
----------
field: str
The field name of the information
Returns
-------
info : array
a numpy array of float information of the data
"""
length = ctypes.c_ulong()
ret = ctypes.POINTER(ctypes.c_float)()
_check_call(_LIB.XGDMatrixGetFloatInfo(self.handle,
c_str(field),
ctypes.byref(length),
ctypes.byref(ret)))
return ctypes2numpy(ret, length.value, np.float32)
def get_uint_info(self, field):
"""Get unsigned integer property from the DMatrix.
Parameters
----------
field: str
The field name of the information
Returns
-------
info : array
a numpy array of float information of the data
"""
length = ctypes.c_ulong()
ret = ctypes.POINTER(ctypes.c_uint)()
_check_call(_LIB.XGDMatrixGetUIntInfo(self.handle,
c_str(field),
ctypes.byref(length),
ctypes.byref(ret)))
return ctypes2numpy(ret, length.value, np.uint32)
def set_float_info(self, field, data):
"""Set float type property into the DMatrix.
Parameters
----------
field: str
The field name of the information
data: numpy array
The array ofdata to be set
"""
_check_call(_LIB.XGDMatrixSetFloatInfo(self.handle,
c_str(field),
c_array(ctypes.c_float, data),
len(data)))
def set_uint_info(self, field, data):
"""Set uint type property into the DMatrix.
Parameters
----------
field: str
The field name of the information
data: numpy array
The array ofdata to be set
"""
_check_call(_LIB.XGDMatrixSetUIntInfo(self.handle,
c_str(field),
c_array(ctypes.c_uint, data),
len(data)))
def save_binary(self, fname, silent=True):
"""Save DMatrix to an XGBoost buffer.
Parameters
----------
fname : string
Name of the output buffer file.
silent : bool (optional; default: True)
If set, the output is suppressed.
"""
_check_call(_LIB.XGDMatrixSaveBinary(self.handle,
c_str(fname),
int(silent)))
def set_label(self, label):
"""Set label of dmatrix
Parameters
----------
label: array like
The label information to be set into DMatrix
"""
self.set_float_info('label', label)
def set_weight(self, weight):
""" Set weight of each instance.
Parameters
----------
weight : array like
Weight for each data point
"""
self.set_float_info('weight', weight)
def set_base_margin(self, margin):
""" Set base margin of booster to start from.
This can be used to specify a prediction value of
existing model to be base_margin
However, remember margin is needed, instead of transformed prediction
e.g. for logistic regression: need to put in value before logistic transformation
see also example/demo.py
Parameters
----------
margin: array like
Prediction margin of each datapoint
"""
self.set_float_info('base_margin', margin)
def set_group(self, group):
"""Set group size of DMatrix (used for ranking).
Parameters
----------
group : array like
Group size of each group
"""
_check_call(_LIB.XGDMatrixSetGroup(self.handle,
c_array(ctypes.c_uint, group),
len(group)))
def get_label(self):
"""Get the label of the DMatrix.
Returns
-------
label : array
"""
return self.get_float_info('label')
def get_weight(self):
"""Get the weight of the DMatrix.
Returns
-------
weight : array
"""
return self.get_float_info('weight')
def get_base_margin(self):
"""Get the base margin of the DMatrix.
Returns
-------
base_margin : float
"""
return self.get_float_info('base_margin')
def num_row(self):
"""Get the number of rows in the DMatrix.
Returns
-------
number of rows : int
"""
ret = ctypes.c_ulong()
_check_call(_LIB.XGDMatrixNumRow(self.handle,
ctypes.byref(ret)))
return ret.value
def slice(self, rindex):
"""Slice the DMatrix and return a new DMatrix that only contains `rindex`.
Parameters
----------
rindex : list
List of indices to be selected.
Returns
-------
res : DMatrix
A new DMatrix containing only selected indices.
"""
res = DMatrix(None)
res.handle = ctypes.c_void_p()
_check_call(_LIB.XGDMatrixSliceDMatrix(self.handle,
c_array(ctypes.c_int, rindex),
len(rindex),
ctypes.byref(res.handle)))
return res
class Booster(object):
""""A Booster of of XGBoost.
Booster is the model of xgboost, that contains low level routines for
training, prediction and evaluation.
"""
def __init__(self, params=None, cache=(), model_file=None):
# pylint: disable=invalid-name
"""Initialize the Booster.
Parameters
----------
params : dict
Parameters for boosters.
cache : list
List of cache items.
model_file : string
Path to the model file.
"""
for d in cache:
if not isinstance(d, DMatrix):
raise TypeError('invalid cache item: {}'.format(type(d).__name__))
dmats = c_array(ctypes.c_void_p, [d.handle for d in cache])
self.handle = ctypes.c_void_p()
_check_call(_LIB.XGBoosterCreate(dmats, len(cache), ctypes.byref(self.handle)))
self.set_param({'seed': 0})
self.set_param(params or {})
if model_file is not None:
self.load_model(model_file)
def __del__(self):
_LIB.XGBoosterFree(self.handle)
def __getstate__(self):
# can't pickle ctypes pointers
# put model content in bytearray
this = self.__dict__.copy()
handle = this['handle']
if handle is not None:
raw = self.save_raw()
this["handle"] = raw
return this
def __setstate__(self, state):
# reconstruct handle from raw data
handle = state['handle']
if handle is not None:
buf = handle
dmats = c_array(ctypes.c_void_p, [])
handle = ctypes.c_void_p()
_check_call(_LIB.XGBoosterCreate(dmats, 0, ctypes.byref(handle)))
length = ctypes.c_ulong(len(buf))
ptr = (ctypes.c_char * len(buf)).from_buffer(buf)
_check_call(_LIB.XGBoosterLoadModelFromBuffer(handle, ptr, length))
state['handle'] = handle
self.__dict__.update(state)
self.set_param({'seed': 0})
def __copy__(self):
return self.__deepcopy__()
def __deepcopy__(self):
return Booster(model_file=self.save_raw())
def copy(self):
"""Copy the booster object.
Returns
-------
booster: `Booster`
a copied booster model
"""
return self.__copy__()
def set_param(self, params, value=None):
"""Set parameters into the Booster.
Parameters
----------
params: dict/list/str
list of key,value paris, dict of key to value or simply str key
value: optional
value of the specified parameter, when params is str key
"""
if isinstance(params, collections.Mapping):
params = params.items()
elif isinstance(params, STRING_TYPES) and value is not None:
params = [(params, value)]
for key, val in params:
_check_call(_LIB.XGBoosterSetParam(self.handle, c_str(key), c_str(str(val))))
def update(self, dtrain, iteration, fobj=None):
"""
Update for one iteration, with objective function calculated internally.
Parameters
----------
dtrain : DMatrix
Training data.
iteration : int
Current iteration number.
fobj : function
Customized objective function.
"""
if not isinstance(dtrain, DMatrix):
raise TypeError('invalid training matrix: {}'.format(type(dtrain).__name__))
if fobj is None:
_check_call(_LIB.XGBoosterUpdateOneIter(self.handle, iteration, dtrain.handle))
else:
pred = self.predict(dtrain)
grad, hess = fobj(pred, dtrain)
self.boost(dtrain, grad, hess)
def boost(self, dtrain, grad, hess):
"""
Boost the booster for one iteration, with customized gradient statistics.
Parameters
----------
dtrain : DMatrix
The training DMatrix.
grad : list
The first order of gradient.
hess : list
The second order of gradient.
"""
if len(grad) != len(hess):
raise ValueError('grad / hess length mismatch: {} / {}'.format(len(grad), len(hess)))
if not isinstance(dtrain, DMatrix):
raise TypeError('invalid training matrix: {}'.format(type(dtrain).__name__))
_check_call(_LIB.XGBoosterBoostOneIter(self.handle, dtrain.handle,
c_array(ctypes.c_float, grad),
c_array(ctypes.c_float, hess),
len(grad)))
def eval_set(self, evals, iteration=0, feval=None):
# pylint: disable=invalid-name
"""Evaluate a set of data.
Parameters
----------
evals : list of tuples (DMatrix, string)
List of items to be evaluated.
iteration : int
Current iteration.
feval : function
Custom evaluation function.
Returns
-------
result: str
Evaluation result string.
"""
if feval is None:
for d in evals:
if not isinstance(d[0], DMatrix):
raise TypeError('expected DMatrix, got {}'.format(type(d[0]).__name__))
if not isinstance(d[1], STRING_TYPES):
raise TypeError('expected string, got {}'.format(type(d[1]).__name__))
dmats = c_array(ctypes.c_void_p, [d[0].handle for d in evals])
evnames = c_array(ctypes.c_char_p, [c_str(d[1]) for d in evals])
msg = ctypes.c_char_p()
_check_call(_LIB.XGBoosterEvalOneIter(self.handle, iteration,
dmats, evnames, len(evals),
ctypes.byref(msg)))
return msg.value
else:
res = '[%d]' % iteration
for dmat, evname in evals:
name, val = feval(self.predict(dmat), dmat)
res += '\t%s-%s:%f' % (evname, name, val)
return res
def eval(self, data, name='eval', iteration=0):
"""Evaluate the model on mat.
Parameters
----------
data : DMatrix
The dmatrix storing the input.
name : str, optional
The name of the dataset.
iteration : int, optional
The current iteration number.
Returns
-------
result: str
Evaluation result string.
"""
return self.eval_set([(data, name)], iteration)
def predict(self, data, output_margin=False, ntree_limit=0, pred_leaf=False):
"""
Predict with data.
NOTE: This function is not thread safe.
For each booster object, predict can only be called from one thread.
If you want to run prediction using multiple thread, call bst.copy() to make copies
of model object and then call predict
Parameters
----------
data : DMatrix
The dmatrix storing the input.
output_margin : bool
Whether to output the raw untransformed margin value.
ntree_limit : int
Limit number of trees in the prediction; defaults to 0 (use all trees).
pred_leaf : bool
When this option is on, the output will be a matrix of (nsample, ntrees)
with each record indicating the predicted leaf index of each sample in each tree.
Note that the leaf index of a tree is unique per tree, so you may find leaf 1
in both tree 1 and tree 0.
Returns
-------
prediction : numpy array
"""
option_mask = 0x00
if output_margin:
option_mask |= 0x01
if pred_leaf:
option_mask |= 0x02
length = ctypes.c_ulong()
preds = ctypes.POINTER(ctypes.c_float)()
_check_call(_LIB.XGBoosterPredict(self.handle, data.handle,
option_mask, ntree_limit,
ctypes.byref(length),
ctypes.byref(preds)))
preds = ctypes2numpy(preds, length.value, np.float32)
if pred_leaf:
preds = preds.astype(np.int32)
nrow = data.num_row()
if preds.size != nrow and preds.size % nrow == 0:
preds = preds.reshape(nrow, preds.size / nrow)
return preds
def save_model(self, fname):
"""
Save the model to a file.
Parameters
----------
fname : string
Output file name
"""
if isinstance(fname, STRING_TYPES): # assume file name
_check_call(_LIB.XGBoosterSaveModel(self.handle, c_str(fname)))
else:
raise TypeError("fname must be a string")
def save_raw(self):
"""
Save the model to a in memory buffer represetation
Returns
-------
a in memory buffer represetation of the model
"""
length = ctypes.c_ulong()
cptr = ctypes.POINTER(ctypes.c_char)()
_check_call(_LIB.XGBoosterGetModelRaw(self.handle,
ctypes.byref(length),
ctypes.byref(cptr)))
return ctypes2buffer(cptr, length.value)
def load_model(self, fname):
"""
Load the model from a file.
Parameters
----------
fname : string or a memory buffer
Input file name or memory buffer(see also save_raw)
"""
if isinstance(fname, str): # assume file name
_LIB.XGBoosterLoadModel(self.handle, c_str(fname))
else:
buf = fname
length = ctypes.c_ulong(len(buf))
ptr = (ctypes.c_char * len(buf)).from_buffer(buf)
_check_call(_LIB.XGBoosterLoadModelFromBuffer(self.handle, ptr, length))
def dump_model(self, fout, fmap='', with_stats=False):
"""
Dump model into a text file.
Parameters
----------
foout : string
Output file name.
fmap : string, optional
Name of the file containing feature map names.
with_stats : bool (optional)
Controls whether the split statistics are output.
"""
if isinstance(fout, STRING_TYPES):
fout = open(fout, 'w')
need_close = True
else:
need_close = False
ret = self.get_dump(fmap, with_stats)
for i in range(len(ret)):
fout.write('booster[{}]:\n'.format(i))
fout.write(ret[i])
if need_close:
fout.close()
def get_dump(self, fmap='', with_stats=False):
"""
Returns the dump the model as a list of strings.
"""
length = ctypes.c_ulong()
sarr = ctypes.POINTER(ctypes.c_char_p)()
_check_call(_LIB.XGBoosterDumpModel(self.handle,
c_str(fmap),
int(with_stats),
ctypes.byref(length),
ctypes.byref(sarr)))
res = []
for i in range(length.value):
res.append(str(sarr[i].decode('ascii')))
return res
def get_fscore(self, fmap=''):
"""Get feature importance of each feature.
Parameters
----------
fmap: str (optional)
The name of feature map file
"""
trees = self.get_dump(fmap)
fmap = {}
for tree in trees:
for line in tree.split('\n'):
arr = line.split('[')
if len(arr) == 1:
continue
fid = arr[1].split(']')[0]
fid = fid.split('<')[0]
if fid not in fmap:
fmap[fid] = 1
else:
fmap[fid] += 1
return fmap