xgboost/R-package/R/xgb.DMatrix.R
david-cortes 3c004a4145
[R] Add missing DMatrix functions (#9929)
* `XGDMatrixGetQuantileCut`
* `XGDMatrixNumNonMissing`
* `XGDMatrixGetDataAsCSR`

---------

Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
2024-01-03 17:29:21 +08:00

735 lines
23 KiB
R

#' Construct xgb.DMatrix object
#'
#' Construct xgb.DMatrix object from either a dense matrix, a sparse matrix, or a local file.
#' Supported input file formats are either a LIBSVM text file or a binary file that was created previously by
#' \code{\link{xgb.DMatrix.save}}).
#'
#' @param data a \code{matrix} object (either numeric or integer), a \code{dgCMatrix} object,
#' a \code{dgRMatrix} object,
#' a \code{dsparseVector} object (only when making predictions from a fitted model, will be
#' interpreted as a row vector), or a character string representing a filename.
#' @param label Label of the training data.
#' @param weight Weight for each instance.
#'
#' Note that, for ranking task, weights are per-group. In ranking task, one weight
#' is assigned to each group (not each data point). This is because we
#' only care about the relative ordering of data points within each group,
#' so it doesn't make sense to assign weights to individual data points.
#' @param base_margin Base margin used for boosting from existing model.
#'
#' In the case of multi-output models, one can also pass multi-dimensional base_margin.
#' @param missing a float value to represents missing values in data (used only when input is a dense matrix).
#' It is useful when a 0 or some other extreme value represents missing values in data.
#' @param silent whether to suppress printing an informational message after loading from a file.
#' @param feature_names Set names for features. Overrides column names in data
#' frame and matrix.
#' @param nthread Number of threads used for creating DMatrix.
#' @param group Group size for all ranking group.
#' @param qid Query ID for data samples, used for ranking.
#' @param label_lower_bound Lower bound for survival training.
#' @param label_upper_bound Upper bound for survival training.
#' @param feature_weights Set feature weights for column sampling.
#' @param enable_categorical Experimental support of specializing for categorical features.
#'
#' If passing 'TRUE' and 'data' is a data frame,
#' columns of categorical types will automatically
#' be set to be of categorical type (feature_type='c') in the resulting DMatrix.
#'
#' If passing 'FALSE' and 'data' is a data frame with categorical columns,
#' it will result in an error being thrown.
#'
#' If 'data' is not a data frame, this argument is ignored.
#'
#' JSON/UBJSON serialization format is required for this.
#'
#' @details
#' Note that DMatrix objects are not serializable through R functions such as \code{saveRDS} or \code{save}.
#' If a DMatrix gets serialized and then de-serialized (for example, when saving data in an R session or caching
#' chunks in an Rmd file), the resulting object will not be usable anymore and will need to be reconstructed
#' from the original source of data.
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' ## Keep the number of threads to 1 for examples
#' nthread <- 1
#' data.table::setDTthreads(nthread)
#' dtrain <- with(
#' agaricus.train, xgb.DMatrix(data, label = label, nthread = nthread)
#' )
#' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
#' dtrain <- xgb.DMatrix('xgb.DMatrix.data')
#' if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')
#' @export
xgb.DMatrix <- function(
data,
label = NULL,
weight = NULL,
base_margin = NULL,
missing = NA,
silent = FALSE,
feature_names = colnames(data),
nthread = NULL,
group = NULL,
qid = NULL,
label_lower_bound = NULL,
label_upper_bound = NULL,
feature_weights = NULL,
enable_categorical = FALSE
) {
if (!is.null(group) && !is.null(qid)) {
stop("Either one of 'group' or 'qid' should be NULL")
}
ctypes <- NULL
if (typeof(data) == "character") {
if (length(data) > 1) {
stop(
"'data' has class 'character' and length ", length(data),
".\n 'data' accepts either a numeric matrix or a single filename."
)
}
data <- path.expand(data)
handle <- .Call(XGDMatrixCreateFromFile_R, data, as.integer(silent))
} else if (is.matrix(data)) {
handle <- .Call(
XGDMatrixCreateFromMat_R, data, missing, as.integer(NVL(nthread, -1))
)
} else if (inherits(data, "dgCMatrix")) {
handle <- .Call(
XGDMatrixCreateFromCSC_R,
data@p,
data@i,
data@x,
nrow(data),
missing,
as.integer(NVL(nthread, -1))
)
} else if (inherits(data, "dgRMatrix")) {
handle <- .Call(
XGDMatrixCreateFromCSR_R,
data@p,
data@j,
data@x,
ncol(data),
missing,
as.integer(NVL(nthread, -1))
)
} else if (inherits(data, "dsparseVector")) {
indptr <- c(0L, as.integer(length(data@i)))
ind <- as.integer(data@i) - 1L
handle <- .Call(
XGDMatrixCreateFromCSR_R,
indptr,
ind,
data@x,
length(data),
missing,
as.integer(NVL(nthread, -1))
)
} else if (is.data.frame(data)) {
ctypes <- sapply(data, function(x) {
if (is.factor(x)) {
if (!enable_categorical) {
stop(
"When factor type is used, the parameter `enable_categorical`",
" must be set to TRUE."
)
}
"c"
} else if (is.integer(x)) {
"int"
} else if (is.logical(x)) {
"i"
} else {
if (!is.numeric(x)) {
stop("Invalid type in dataframe.")
}
"float"
}
})
## as.data.frame somehow converts integer/logical into real.
data <- as.data.frame(sapply(data, function(x) {
if (is.factor(x)) {
## XGBoost uses 0-based indexing.
as.numeric(x) - 1
} else {
x
}
}))
handle <- .Call(
XGDMatrixCreateFromDF_R, data, missing, as.integer(NVL(nthread, -1))
)
} else {
stop("xgb.DMatrix does not support construction from ", typeof(data))
}
dmat <- handle
attributes(dmat) <- list(
class = "xgb.DMatrix",
fields = new.env()
)
if (!is.null(label)) {
setinfo(dmat, "label", label)
}
if (!is.null(weight)) {
setinfo(dmat, "weight", weight)
}
if (!is.null(base_margin)) {
setinfo(dmat, "base_margin", base_margin)
}
if (!is.null(feature_names)) {
setinfo(dmat, "feature_name", feature_names)
}
if (!is.null(group)) {
setinfo(dmat, "group", group)
}
if (!is.null(qid)) {
setinfo(dmat, "qid", qid)
}
if (!is.null(label_lower_bound)) {
setinfo(dmat, "label_lower_bound", label_lower_bound)
}
if (!is.null(label_upper_bound)) {
setinfo(dmat, "label_upper_bound", label_upper_bound)
}
if (!is.null(feature_weights)) {
setinfo(dmat, "feature_weights", feature_weights)
}
if (!is.null(ctypes)) {
setinfo(dmat, "feature_type", ctypes)
}
return(dmat)
}
#' @title Check whether DMatrix object has a field
#' @description Checks whether an xgb.DMatrix object has a given field assigned to
#' it, such as weights, labels, etc.
#' @param object The DMatrix object to check for the given \code{info} field.
#' @param info The field to check for presence or absence in \code{object}.
#' @seealso \link{xgb.DMatrix}, \link{getinfo.xgb.DMatrix}, \link{setinfo.xgb.DMatrix}
#' @examples
#' library(xgboost)
#' x <- matrix(1:10, nrow = 5)
#' dm <- xgb.DMatrix(x, nthread = 1)
#'
#' # 'dm' so far doesn't have any fields set
#' xgb.DMatrix.hasinfo(dm, "label")
#'
#' # Fields can be added after construction
#' setinfo(dm, "label", 1:5)
#' xgb.DMatrix.hasinfo(dm, "label")
#' @export
xgb.DMatrix.hasinfo <- function(object, info) {
if (!inherits(object, "xgb.DMatrix")) {
stop("Object is not an 'xgb.DMatrix'.")
}
if (.Call(XGCheckNullPtr_R, object)) {
warning("xgb.DMatrix object is invalid. Must be constructed again.")
return(FALSE)
}
return(NVL(attr(object, "fields")[[info]], FALSE))
}
# get dmatrix from data, label
# internal helper method
xgb.get.DMatrix <- function(data, label, missing, weight, nthread) {
if (inherits(data, "dgCMatrix") || is.matrix(data)) {
if (is.null(label)) {
stop("label must be provided when data is a matrix")
}
dtrain <- xgb.DMatrix(data, label = label, missing = missing, nthread = nthread)
if (!is.null(weight)) {
setinfo(dtrain, "weight", weight)
}
} else {
if (!is.null(label)) {
warning("xgboost: label will be ignored.")
}
if (is.character(data)) {
data <- path.expand(data)
dtrain <- xgb.DMatrix(data[1])
} else if (inherits(data, "xgb.DMatrix")) {
dtrain <- data
} else if (inherits(data, "data.frame")) {
stop("xgboost doesn't support data.frame as input. Convert it to matrix first.")
} else {
stop("xgboost: invalid input data")
}
}
return(dtrain)
}
#' Dimensions of xgb.DMatrix
#'
#' Returns a vector of numbers of rows and of columns in an \code{xgb.DMatrix}.
#' @param x Object of class \code{xgb.DMatrix}
#'
#' @details
#' Note: since \code{nrow} and \code{ncol} internally use \code{dim}, they can also
#' be directly used with an \code{xgb.DMatrix} object.
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' train <- agaricus.train
#' dtrain <- xgb.DMatrix(train$data, label=train$label, nthread = 2)
#'
#' stopifnot(nrow(dtrain) == nrow(train$data))
#' stopifnot(ncol(dtrain) == ncol(train$data))
#' stopifnot(all(dim(dtrain) == dim(train$data)))
#'
#' @export
dim.xgb.DMatrix <- function(x) {
c(.Call(XGDMatrixNumRow_R, x), .Call(XGDMatrixNumCol_R, x))
}
#' Handling of column names of \code{xgb.DMatrix}
#'
#' Only column names are supported for \code{xgb.DMatrix}, thus setting of
#' row names would have no effect and returned row names would be NULL.
#'
#' @param x object of class \code{xgb.DMatrix}
#' @param value a list of two elements: the first one is ignored
#' and the second one is column names
#'
#' @details
#' Generic \code{dimnames} methods are used by \code{colnames}.
#' Since row names are irrelevant, it is recommended to use \code{colnames} directly.
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' train <- agaricus.train
#' dtrain <- xgb.DMatrix(train$data, label=train$label, nthread = 2)
#' dimnames(dtrain)
#' colnames(dtrain)
#' colnames(dtrain) <- make.names(1:ncol(train$data))
#' print(dtrain, verbose=TRUE)
#'
#' @rdname dimnames.xgb.DMatrix
#' @export
dimnames.xgb.DMatrix <- function(x) {
fn <- getinfo(x, "feature_name")
## row names is null.
list(NULL, fn)
}
#' @rdname dimnames.xgb.DMatrix
#' @export
`dimnames<-.xgb.DMatrix` <- function(x, value) {
if (!is.list(value) || length(value) != 2L)
stop("invalid 'dimnames' given: must be a list of two elements")
if (!is.null(value[[1L]]))
stop("xgb.DMatrix does not have rownames")
if (is.null(value[[2]])) {
setinfo(x, "feature_name", NULL)
return(x)
}
if (ncol(x) != length(value[[2]])) {
stop("can't assign ", length(value[[2]]), " colnames to a ", ncol(x), " column xgb.DMatrix")
}
setinfo(x, "feature_name", value[[2]])
x
}
#' Get information of an xgb.DMatrix object
#'
#' Get information of an xgb.DMatrix object
#' @param object Object of class \code{xgb.DMatrix}
#' @param name the name of the information field to get (see details)
#'
#' @details
#' The \code{name} field can be one of the following:
#'
#' \itemize{
#' \item \code{label}
#' \item \code{weight}
#' \item \code{base_margin}
#' \item \code{label_lower_bound}
#' \item \code{label_upper_bound}
#' \item \code{group}
#' \item \code{feature_type}
#' \item \code{feature_name}
#' \item \code{nrow}
#' }
#' See the documentation for \link{xgb.DMatrix} for more information about these fields.
#'
#' Note that, while 'qid' cannot be retrieved, it's possible to get the equivalent 'group'
#' for a DMatrix that had 'qid' assigned.
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
#'
#' labels <- getinfo(dtrain, 'label')
#' setinfo(dtrain, 'label', 1-labels)
#'
#' labels2 <- getinfo(dtrain, 'label')
#' stopifnot(all(labels2 == 1-labels))
#' @rdname getinfo
#' @export
getinfo <- function(object, name) UseMethod("getinfo")
#' @rdname getinfo
#' @export
getinfo.xgb.DMatrix <- function(object, name) {
allowed_int_fields <- 'group'
allowed_float_fields <- c(
'label', 'weight', 'base_margin',
'label_lower_bound', 'label_upper_bound'
)
allowed_str_fields <- c("feature_type", "feature_name")
allowed_fields <- c(allowed_float_fields, allowed_int_fields, allowed_str_fields, 'nrow')
if (typeof(name) != "character" ||
length(name) != 1 ||
!name %in% allowed_fields) {
stop("getinfo: name must be one of the following\n",
paste(paste0("'", allowed_fields, "'"), collapse = ", "))
}
if (name == "nrow") {
ret <- nrow(object)
} else if (name %in% allowed_str_fields) {
ret <- .Call(XGDMatrixGetStrFeatureInfo_R, object, name)
} else if (name %in% allowed_float_fields) {
ret <- .Call(XGDMatrixGetFloatInfo_R, object, name)
if (length(ret) > nrow(object)) {
ret <- matrix(ret, nrow = nrow(object), byrow = TRUE)
}
} else if (name %in% allowed_int_fields) {
if (name == "group") {
name <- "group_ptr"
}
ret <- .Call(XGDMatrixGetUIntInfo_R, object, name)
if (length(ret) > nrow(object)) {
ret <- matrix(ret, nrow = nrow(object), byrow = TRUE)
}
}
if (length(ret) == 0) return(NULL)
return(ret)
}
#' Set information of an xgb.DMatrix object
#'
#' Set information of an xgb.DMatrix object
#'
#' @param object Object of class "xgb.DMatrix"
#' @param name the name of the field to get
#' @param info the specific field of information to set
#'
#' @details
#' See the documentation for \link{xgb.DMatrix} for possible fields that can be set
#' (which correspond to arguments in that function).
#'
#' Note that the following fields are allowed in the construction of an \code{xgb.DMatrix}
#' but \bold{aren't} allowed here:\itemize{
#' \item data
#' \item missing
#' \item silent
#' \item nthread
#' }
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
#'
#' labels <- getinfo(dtrain, 'label')
#' setinfo(dtrain, 'label', 1-labels)
#' labels2 <- getinfo(dtrain, 'label')
#' stopifnot(all.equal(labels2, 1-labels))
#' @rdname setinfo
#' @export
setinfo <- function(object, name, info) UseMethod("setinfo")
#' @rdname setinfo
#' @export
setinfo.xgb.DMatrix <- function(object, name, info) {
.internal.setinfo.xgb.DMatrix(object, name, info)
attr(object, "fields")[[name]] <- TRUE
return(TRUE)
}
.internal.setinfo.xgb.DMatrix <- function(object, name, info) {
if (name == "label") {
if (NROW(info) != nrow(object))
stop("The length of labels must equal to the number of rows in the input data")
.Call(XGDMatrixSetInfo_R, object, name, info)
return(TRUE)
}
if (name == "label_lower_bound") {
if (NROW(info) != nrow(object))
stop("The length of lower-bound labels must equal to the number of rows in the input data")
.Call(XGDMatrixSetInfo_R, object, name, info)
return(TRUE)
}
if (name == "label_upper_bound") {
if (NROW(info) != nrow(object))
stop("The length of upper-bound labels must equal to the number of rows in the input data")
.Call(XGDMatrixSetInfo_R, object, name, info)
return(TRUE)
}
if (name == "weight") {
.Call(XGDMatrixSetInfo_R, object, name, info)
return(TRUE)
}
if (name == "base_margin") {
.Call(XGDMatrixSetInfo_R, object, name, info)
return(TRUE)
}
if (name == "group") {
if (sum(info) != nrow(object))
stop("The sum of groups must equal to the number of rows in the input data")
.Call(XGDMatrixSetInfo_R, object, name, info)
return(TRUE)
}
if (name == "qid") {
if (NROW(info) != nrow(object))
stop("The length of qid assignments must equal to the number of rows in the input data")
.Call(XGDMatrixSetInfo_R, object, name, info)
return(TRUE)
}
if (name == "feature_weights") {
if (NROW(info) != ncol(object)) {
stop("The number of feature weights must equal to the number of columns in the input data")
}
.Call(XGDMatrixSetInfo_R, object, name, info)
return(TRUE)
}
set_feat_info <- function(name) {
msg <- sprintf(
"The number of %s must equal to the number of columns in the input data. %s vs. %s",
name,
length(info),
ncol(object)
)
if (!is.null(info)) {
info <- as.list(info)
if (length(info) != ncol(object)) {
stop(msg)
}
}
.Call(XGDMatrixSetStrFeatureInfo_R, object, name, info)
}
if (name == "feature_name") {
set_feat_info("feature_name")
return(TRUE)
}
if (name == "feature_type") {
set_feat_info("feature_type")
return(TRUE)
}
stop("setinfo: unknown info name ", name)
}
#' @title Get Quantile Cuts from DMatrix
#' @description Get the quantile cuts (a.k.a. borders) from an `xgb.DMatrix`
#' that has been quantized for the histogram method (`tree_method="hist"`).
#'
#' These cuts are used in order to assign observations to bins - i.e. these are ordered
#' boundaries which are used to determine assignment condition `border_low < x < border_high`.
#' As such, the first and last bin will be outside of the range of the data, so as to include
#' all of the observations there.
#'
#' If a given column has 'n' bins, then there will be 'n+1' cuts / borders for that column,
#' which will be output in sorted order from lowest to highest.
#'
#' Different columns can have different numbers of bins according to their range.
#' @param dmat An `xgb.DMatrix` object, as returned by \link{xgb.DMatrix}.
#' @param output Output format for the quantile cuts. Possible options are:\itemize{
#' \item `"list"` will return the output as a list with one entry per column, where
#' each column will have a numeric vector with the cuts. The list will be named if
#' `dmat` has column names assigned to it.
#' \item `"arrays"` will return a list with entries `indptr` (base-0 indexing) and
#' `data`. Here, the cuts for column 'i' are obtained by slicing 'data' from entries
#' `indptr[i]+1` to `indptr[i+1]`.
#' }
#' @return The quantile cuts, in the format specified by parameter `output`.
#' @examples
#' library(xgboost)
#' data(mtcars)
#' y <- mtcars$mpg
#' x <- as.matrix(mtcars[, -1])
#' dm <- xgb.DMatrix(x, label = y, nthread = 1)
#'
#' # DMatrix is not quantized right away, but will be once a hist model is generated
#' model <- xgb.train(
#' data = dm,
#' params = list(
#' tree_method = "hist",
#' max_bin = 8,
#' nthread = 1
#' ),
#' nrounds = 3
#' )
#'
#' # Now can get the quantile cuts
#' xgb.get.DMatrix.qcut(dm)
#' @export
xgb.get.DMatrix.qcut <- function(dmat, output = c("list", "arrays")) { # nolint
stopifnot(inherits(dmat, "xgb.DMatrix"))
output <- head(output, 1L)
stopifnot(output %in% c("list", "arrays"))
res <- .Call(XGDMatrixGetQuantileCut_R, dmat)
if (output == "arrays") {
return(res)
} else {
feature_names <- getinfo(dmat, "feature_name")
ncols <- length(res$indptr) - 1
out <- lapply(
seq(1, ncols),
function(col) {
st <- res$indptr[col]
end <- res$indptr[col + 1]
if (end <= st) {
return(numeric())
}
return(res$data[seq(1 + st, end)])
}
)
if (NROW(feature_names)) {
names(out) <- feature_names
}
return(out)
}
}
#' @title Get Number of Non-Missing Entries in DMatrix
#' @param dmat An `xgb.DMatrix` object, as returned by \link{xgb.DMatrix}.
#' @return The number of non-missing entries in the DMatrix
#' @export
xgb.get.DMatrix.num.non.missing <- function(dmat) { # nolint
stopifnot(inherits(dmat, "xgb.DMatrix"))
return(.Call(XGDMatrixNumNonMissing_R, dmat))
}
#' @title Get DMatrix Data
#' @param dmat An `xgb.DMatrix` object, as returned by \link{xgb.DMatrix}.
#' @return The data held in the DMatrix, as a sparse CSR matrix (class `dgRMatrix`
#' from package `Matrix`). If it had feature names, these will be added as column names
#' in the output.
#' @export
xgb.get.DMatrix.data <- function(dmat) {
stopifnot(inherits(dmat, "xgb.DMatrix"))
res <- .Call(XGDMatrixGetDataAsCSR_R, dmat)
out <- methods::new("dgRMatrix")
nrows <- as.integer(length(res$indptr) - 1)
out@p <- res$indptr
out@j <- res$indices
out@x <- res$data
out@Dim <- as.integer(c(nrows, res$ncols))
feature_names <- getinfo(dmat, "feature_name")
dim_names <- list(NULL, NULL)
if (NROW(feature_names)) {
dim_names[[2L]] <- feature_names
}
out@Dimnames <- dim_names
return(out)
}
#' Get a new DMatrix containing the specified rows of
#' original xgb.DMatrix object
#'
#' Get a new DMatrix containing the specified rows of
#' original xgb.DMatrix object
#'
#' @param object Object of class "xgb.DMatrix"
#' @param idxset a integer vector of indices of rows needed
#' @param colset currently not used (columns subsetting is not available)
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
#'
#' dsub <- slice(dtrain, 1:42)
#' labels1 <- getinfo(dsub, 'label')
#' dsub <- dtrain[1:42, ]
#' labels2 <- getinfo(dsub, 'label')
#' all.equal(labels1, labels2)
#'
#' @rdname slice.xgb.DMatrix
#' @export
slice <- function(object, idxset) UseMethod("slice")
#' @rdname slice.xgb.DMatrix
#' @export
slice.xgb.DMatrix <- function(object, idxset) {
if (!inherits(object, "xgb.DMatrix")) {
stop("object must be xgb.DMatrix")
}
ret <- .Call(XGDMatrixSliceDMatrix_R, object, idxset)
attr_list <- attributes(object)
nr <- nrow(object)
len <- sapply(attr_list, NROW)
ind <- which(len == nr)
if (length(ind) > 0) {
nms <- names(attr_list)[ind]
for (i in seq_along(ind)) {
obj_attr <- attr(object, nms[i])
if (NCOL(obj_attr) > 1) {
attr(ret, nms[i]) <- obj_attr[idxset, ]
} else {
attr(ret, nms[i]) <- obj_attr[idxset]
}
}
}
return(structure(ret, class = "xgb.DMatrix"))
}
#' @rdname slice.xgb.DMatrix
#' @export
`[.xgb.DMatrix` <- function(object, idxset, colset = NULL) {
slice(object, idxset)
}
#' Print xgb.DMatrix
#'
#' Print information about xgb.DMatrix.
#' Currently it displays dimensions and presence of info-fields and colnames.
#'
#' @param x an xgb.DMatrix object
#' @param verbose whether to print colnames (when present)
#' @param ... not currently used
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
#'
#' dtrain
#' print(dtrain, verbose=TRUE)
#'
#' @method print xgb.DMatrix
#' @export
print.xgb.DMatrix <- function(x, verbose = FALSE, ...) {
if (.Call(XGCheckNullPtr_R, x)) {
cat("INVALID xgb.DMatrix object. Must be constructed anew.\n")
return(invisible(x))
}
cat('xgb.DMatrix dim:', nrow(x), 'x', ncol(x), ' info: ')
infos <- character(0)
if (xgb.DMatrix.hasinfo(x, 'label')) infos <- 'label'
if (xgb.DMatrix.hasinfo(x, 'weight')) infos <- c(infos, 'weight')
if (xgb.DMatrix.hasinfo(x, 'base_margin')) infos <- c(infos, 'base_margin')
if (length(infos) == 0) infos <- 'NA'
cat(infos)
cnames <- colnames(x)
cat(' colnames:')
if (verbose && !is.null(cnames)) {
cat("\n'")
cat(cnames, sep = "','")
cat("'")
} else {
if (is.null(cnames)) cat(' no')
else cat(' yes')
}
cat("\n")
invisible(x)
}