Jiaming Yuan d9a47794a5 Fix CPU hist init for sparse dataset. (#4625)
* Fix CPU hist init for sparse dataset.

* Implement sparse histogram cut.
* Allow empty features.

* Fix windows build, don't use sparse in distributed environment.

* Comments.

* Smaller threshold.

* Fix windows omp.

* Fix msvc lambda capture.

* Fix MSVC macro.

* Fix MSVC initialization list.

* Fix MSVC initialization list x2.

* Preserve categorical feature behavior.

* Rename matrix to sparse cuts.
* Reuse UseGroup.
* Check for categorical data when adding cut.

Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>

* Sanity check.

* Fix comments.

* Fix comment.
2019-07-04 16:27:03 -07:00

516 lines
16 KiB
C++

/*!
* Copyright (c) 2015 by Contributors
* \file data.h
* \brief The input data structure of xgboost.
* \author Tianqi Chen
*/
#ifndef XGBOOST_DATA_H_
#define XGBOOST_DATA_H_
#include <dmlc/base.h>
#include <dmlc/data.h>
#include <rabit/rabit.h>
#include <cstring>
#include <memory>
#include <numeric>
#include <algorithm>
#include <string>
#include <vector>
#include "./base.h"
#include "../../src/common/span.h"
#include "../../src/common/group_data.h"
#include "../../src/common/host_device_vector.h"
namespace xgboost {
// forward declare learner.
class LearnerImpl;
/*! \brief data type accepted by xgboost interface */
enum DataType {
kFloat32 = 1,
kDouble = 2,
kUInt32 = 3,
kUInt64 = 4
};
/*!
* \brief Meta information about dataset, always sit in memory.
*/
class MetaInfo {
public:
/*! \brief number of rows in the data */
uint64_t num_row_{0};
/*! \brief number of columns in the data */
uint64_t num_col_{0};
/*! \brief number of nonzero entries in the data */
uint64_t num_nonzero_{0};
/*! \brief label of each instance */
HostDeviceVector<bst_float> labels_;
/*!
* \brief specified root index of each instance,
* can be used for multi task setting
*/
std::vector<bst_uint> root_index_;
/*!
* \brief the index of begin and end of a group
* needed when the learning task is ranking.
*/
std::vector<bst_uint> group_ptr_;
/*! \brief weights of each instance, optional */
HostDeviceVector<bst_float> weights_;
/*! \brief session-id of each instance, optional */
std::vector<uint64_t> qids_;
/*!
* \brief initialized margins,
* if specified, xgboost will start from this init margin
* can be used to specify initial prediction to boost from.
*/
HostDeviceVector<bst_float> base_margin_;
/*! \brief version flag, used to check version of this info */
static const int kVersion = 2;
/*! \brief version that introduced qid field */
static const int kVersionQidAdded = 2;
/*! \brief default constructor */
MetaInfo() = default;
/*!
* \brief Get weight of each instances.
* \param i Instance index.
* \return The weight.
*/
inline bst_float GetWeight(size_t i) const {
return weights_.Size() != 0 ? weights_.HostVector()[i] : 1.0f;
}
/*!
* \brief Get the root index of i-th instance.
* \param i Instance index.
* \return The pre-defined root index of i-th instance.
*/
inline unsigned GetRoot(size_t i) const {
return root_index_.size() != 0 ? root_index_[i] : 0U;
}
/*! \brief get sorted indexes (argsort) of labels by absolute value (used by cox loss) */
inline const std::vector<size_t>& LabelAbsSort() const {
if (label_order_cache_.size() == labels_.Size()) {
return label_order_cache_;
}
label_order_cache_.resize(labels_.Size());
std::iota(label_order_cache_.begin(), label_order_cache_.end(), 0);
const auto& l = labels_.HostVector();
XGBOOST_PARALLEL_SORT(label_order_cache_.begin(), label_order_cache_.end(),
[&l](size_t i1, size_t i2) {return std::abs(l[i1]) < std::abs(l[i2]);});
return label_order_cache_;
}
/*! \brief clear all the information */
void Clear();
/*!
* \brief Load the Meta info from binary stream.
* \param fi The input stream
*/
void LoadBinary(dmlc::Stream* fi);
/*!
* \brief Save the Meta info to binary stream
* \param fo The output stream.
*/
void SaveBinary(dmlc::Stream* fo) const;
/*!
* \brief Set information in the meta info.
* \param key The key of the information.
* \param dptr The data pointer of the source array.
* \param dtype The type of the source data.
* \param num Number of elements in the source array.
*/
void SetInfo(const char* key, const void* dptr, DataType dtype, size_t num);
private:
/*! \brief argsort of labels */
mutable std::vector<size_t> label_order_cache_;
};
/*! \brief Element from a sparse vector */
struct Entry {
/*! \brief feature index */
bst_uint index;
/*! \brief feature value */
bst_float fvalue;
/*! \brief default constructor */
Entry() = default;
/*!
* \brief constructor with index and value
* \param index The feature or row index.
* \param fvalue The feature value.
*/
Entry(bst_uint index, bst_float fvalue) : index(index), fvalue(fvalue) {}
/*! \brief reversely compare feature values */
inline static bool CmpValue(const Entry& a, const Entry& b) {
return a.fvalue < b.fvalue;
}
inline bool operator==(const Entry& other) const {
return (this->index == other.index && this->fvalue == other.fvalue);
}
};
/*!
* \brief In-memory storage unit of sparse batch, stored in CSR format.
*/
class SparsePage {
public:
// Offset for each row.
HostDeviceVector<size_t> offset;
/*! \brief the data of the segments */
HostDeviceVector<Entry> data;
size_t base_rowid;
/*! \brief an instance of sparse vector in the batch */
using Inst = common::Span<Entry const>;
/*! \brief get i-th row from the batch */
inline Inst operator[](size_t i) const {
const auto& data_vec = data.HostVector();
const auto& offset_vec = offset.HostVector();
size_t size;
// in distributed mode, some partitions may not get any instance for a feature. Therefore
// we should set the size as zero
if (rabit::IsDistributed() && i + 1 >= offset_vec.size()) {
size = 0;
} else {
size = offset_vec[i + 1] - offset_vec[i];
}
return {data_vec.data() + offset_vec[i],
static_cast<Inst::index_type>(size)};
}
/*! \brief constructor */
SparsePage() {
this->Clear();
}
/*! \return number of instance in the page */
inline size_t Size() const {
return offset.Size() - 1;
}
/*! \return estimation of memory cost of this page */
inline size_t MemCostBytes() const {
return offset.Size() * sizeof(size_t) + data.Size() * sizeof(Entry);
}
/*! \brief clear the page */
inline void Clear() {
base_rowid = 0;
auto& offset_vec = offset.HostVector();
offset_vec.clear();
offset_vec.push_back(0);
data.HostVector().clear();
}
SparsePage GetTranspose(int num_columns) const {
SparsePage transpose;
common::ParallelGroupBuilder<Entry> builder(&transpose.offset.HostVector(),
&transpose.data.HostVector());
const int nthread = omp_get_max_threads();
builder.InitBudget(num_columns, nthread);
long batch_size = static_cast<long>(this->Size()); // NOLINT(*)
#pragma omp parallel for schedule(static)
for (long i = 0; i < batch_size; ++i) { // NOLINT(*)
int tid = omp_get_thread_num();
auto inst = (*this)[i];
for (bst_uint j = 0; j < inst.size(); ++j) {
builder.AddBudget(inst[j].index, tid);
}
}
builder.InitStorage();
#pragma omp parallel for schedule(static)
for (long i = 0; i < batch_size; ++i) { // NOLINT(*)
int tid = omp_get_thread_num();
auto inst = (*this)[i];
for (bst_uint j = 0; j < inst.size(); ++j) {
builder.Push(
inst[j].index,
Entry(static_cast<bst_uint>(this->base_rowid + i), inst[j].fvalue),
tid);
}
}
return transpose;
}
void SortRows() {
auto ncol = static_cast<bst_omp_uint>(this->Size());
#pragma omp parallel for schedule(dynamic, 1)
for (bst_omp_uint i = 0; i < ncol; ++i) {
if (this->offset.HostVector()[i] < this->offset.HostVector()[i + 1]) {
std::sort(
this->data.HostVector().begin() + this->offset.HostVector()[i],
this->data.HostVector().begin() + this->offset.HostVector()[i + 1],
Entry::CmpValue);
}
}
}
/*!
* \brief Push row block into the page.
* \param batch the row batch.
*/
void Push(const dmlc::RowBlock<uint32_t>& batch);
/*!
* \brief Push a sparse page
* \param batch the row page
*/
void Push(const SparsePage &batch);
/*!
* \brief Push a SparsePage stored in CSC format
* \param batch The row batch to be pushed
*/
void PushCSC(const SparsePage& batch);
/*!
* \brief Push one instance into page
* \param inst an instance row
*/
void Push(const Inst &inst);
size_t Size() { return offset.Size() - 1; }
};
class BatchIteratorImpl {
public:
virtual ~BatchIteratorImpl() {}
virtual BatchIteratorImpl* Clone() = 0;
virtual SparsePage& operator*() = 0;
virtual const SparsePage& operator*() const = 0;
virtual void operator++() = 0;
virtual bool AtEnd() const = 0;
};
class BatchIterator {
public:
using iterator_category = std::forward_iterator_tag;
explicit BatchIterator(BatchIteratorImpl* impl) { impl_.reset(impl); }
BatchIterator(const BatchIterator& other) {
if (other.impl_) {
impl_.reset(other.impl_->Clone());
} else {
impl_.reset();
}
}
void operator++() {
CHECK(impl_ != nullptr);
++(*impl_);
}
SparsePage& operator*() {
CHECK(impl_ != nullptr);
return *(*impl_);
}
const SparsePage& operator*() const {
CHECK(impl_ != nullptr);
return *(*impl_);
}
bool operator!=(const BatchIterator& rhs) const {
CHECK(impl_ != nullptr);
return !impl_->AtEnd();
}
bool AtEnd() const {
CHECK(impl_ != nullptr);
return impl_->AtEnd();
}
private:
std::unique_ptr<BatchIteratorImpl> impl_;
};
class BatchSet {
public:
explicit BatchSet(BatchIterator begin_iter) : begin_iter_(begin_iter) {}
BatchIterator begin() { return begin_iter_; }
BatchIterator end() { return BatchIterator(nullptr); }
private:
BatchIterator begin_iter_;
};
/*!
* \brief This is data structure that user can pass to DMatrix::Create
* to create a DMatrix for training, user can create this data structure
* for customized Data Loading on single machine.
*
* On distributed setting, usually an customized dmlc::Parser is needed instead.
*/
class DataSource : public dmlc::DataIter<SparsePage> {
public:
/*!
* \brief Meta information about the dataset
* The subclass need to be able to load this correctly from data.
*/
MetaInfo info;
};
/*!
* \brief A vector-like structure to represent set of rows.
* But saves the memory when all rows are in the set (common case in xgb)
*/
class RowSet {
public:
/*! \return i-th row index */
inline bst_uint operator[](size_t i) const;
/*! \return the size of the set. */
inline size_t Size() const;
/*! \brief push the index back to the set */
inline void PushBack(bst_uint i);
/*! \brief clear the set */
inline void Clear();
/*!
* \brief save rowset to file.
* \param fo The file to be saved.
*/
inline void Save(dmlc::Stream* fo) const;
/*!
* \brief Load rowset from file.
* \param fi The file to be loaded.
* \return if read is successful.
*/
inline bool Load(dmlc::Stream* fi);
/*! \brief constructor */
RowSet() = default;
private:
/*! \brief The internal data structure of size */
uint64_t size_{0};
/*! \brief The internal data structure of row set if not all*/
std::vector<bst_uint> rows_;
};
/*!
* \brief Internal data structured used by XGBoost during training.
* There are two ways to create a customized DMatrix that reads in user defined-format.
*
* - Provide a dmlc::Parser and pass into the DMatrix::Create
* - Alternatively, if data can be represented by an URL, define a new dmlc::Parser and register by DMLC_REGISTER_DATA_PARSER;
* - This works best for user defined data input source, such as data-base, filesystem.
* - Provide a DataSource, that can be passed to DMatrix::Create
* This can be used to re-use inmemory data structure into DMatrix.
*/
class DMatrix {
public:
/*! \brief default constructor */
DMatrix() = default;
/*! \brief meta information of the dataset */
virtual MetaInfo& Info() = 0;
/*! \brief meta information of the dataset */
virtual const MetaInfo& Info() const = 0;
/**
* \brief Gets row batches. Use range based for loop over BatchSet to access individual batches.
*/
virtual BatchSet GetRowBatches() = 0;
virtual BatchSet GetSortedColumnBatches() = 0;
virtual BatchSet GetColumnBatches() = 0;
// the following are column meta data, should be able to answer them fast.
/*! \return Whether the data columns single column block. */
virtual bool SingleColBlock() const = 0;
/*! \brief get column density */
virtual float GetColDensity(size_t cidx) = 0;
/*! \brief virtual destructor */
virtual ~DMatrix() = default;
/*!
* \brief Save DMatrix to local file.
* The saved file only works for non-sharded dataset(single machine training).
* This API is deprecated and dis-encouraged to use.
* \param fname The file name to be saved.
* \return The created DMatrix.
*/
virtual void SaveToLocalFile(const std::string& fname);
/*!
* \brief Load DMatrix from URI.
* \param uri The URI of input.
* \param silent Whether print information during loading.
* \param load_row_split Flag to read in part of rows, divided among the workers in distributed mode.
* \param file_format The format type of the file, used for dmlc::Parser::Create.
* By default "auto" will be able to load in both local binary file.
* \param page_size Page size for external memory.
* \return The created DMatrix.
*/
static DMatrix* Load(const std::string& uri,
bool silent,
bool load_row_split,
const std::string& file_format = "auto",
const size_t page_size = kPageSize);
/*!
* \brief create a new DMatrix, by wrapping a row_iterator, and meta info.
* \param source The source iterator of the data, the create function takes ownership of the source.
* \param cache_prefix The path to prefix of temporary cache file of the DMatrix when used in external memory mode.
* This can be nullptr for common cases, and in-memory mode will be used.
* \return a Created DMatrix.
*/
static DMatrix* Create(std::unique_ptr<DataSource>&& source,
const std::string& cache_prefix = "");
/*!
* \brief Create a DMatrix by loading data from parser.
* Parser can later be deleted after the DMatrix i created.
* \param parser The input data parser
* \param cache_prefix The path to prefix of temporary cache file of the DMatrix when used in external memory mode.
* This can be nullptr for common cases, and in-memory mode will be used.
* \param page_size Page size for external memory.
* \sa dmlc::Parser
* \note dmlc-core provides efficient distributed data parser for libsvm format.
* User can create and register customized parser to load their own format using DMLC_REGISTER_DATA_PARSER.
* See "dmlc-core/include/dmlc/data.h" for detail.
* \return A created DMatrix.
*/
static DMatrix* Create(dmlc::Parser<uint32_t>* parser,
const std::string& cache_prefix = "",
const size_t page_size = kPageSize);
/*! \brief page size 32 MB */
static const size_t kPageSize = 32UL << 20UL;
};
// implementation of inline functions
inline bst_uint RowSet::operator[](size_t i) const {
return rows_.size() == 0 ? static_cast<bst_uint>(i) : rows_[i];
}
inline size_t RowSet::Size() const {
return size_;
}
inline void RowSet::Clear() {
rows_.clear(); size_ = 0;
}
inline void RowSet::PushBack(bst_uint i) {
if (rows_.size() == 0) {
if (i == size_) {
++size_; return;
} else {
rows_.resize(size_);
for (size_t i = 0; i < size_; ++i) {
rows_[i] = static_cast<bst_uint>(i);
}
}
}
rows_.push_back(i);
++size_;
}
inline void RowSet::Save(dmlc::Stream* fo) const {
fo->Write(rows_);
fo->Write(&size_, sizeof(size_));
}
inline bool RowSet::Load(dmlc::Stream* fi) {
if (!fi->Read(&rows_)) return false;
if (rows_.size() != 0) return true;
return fi->Read(&size_, sizeof(size_)) == sizeof(size_);
}
} // namespace xgboost
namespace dmlc {
DMLC_DECLARE_TRAITS(is_pod, xgboost::Entry, true);
DMLC_DECLARE_TRAITS(has_saveload, xgboost::RowSet, true);
}
#endif // XGBOOST_DATA_H_