xgboost/tests/python/test_tracker.py
Jiaming Yuan a269055b2b
[coll] Use loky for tests. (#10676)
This makes the tests easier to run and debug. In addition, they can now work on Windows as
well.
2024-08-03 07:33:42 +08:00

263 lines
8.6 KiB
Python

import re
import sys
from functools import partial, update_wrapper
from typing import Dict, Union
import numpy as np
import pytest
from hypothesis import HealthCheck, given, settings, strategies
import xgboost as xgb
from xgboost import RabitTracker, collective
from xgboost import testing as tm
def test_rabit_tracker():
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=1)
tracker.start()
with collective.CommunicatorContext(**tracker.worker_args()):
ret = collective.broadcast("test1234", 0)
assert str(ret) == "test1234"
@pytest.mark.skipif(**tm.not_linux())
def test_socket_error():
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=2)
tracker.start()
env = tracker.worker_args()
env["dmlc_tracker_port"] = 0
env["dmlc_retry"] = 1
with pytest.raises(ValueError, match="Failed to bootstrap the communication."):
with collective.CommunicatorContext(**env):
pass
with pytest.raises(ValueError):
tracker.free()
def run_rabit_ops(client, n_workers):
from xgboost.dask import CommunicatorContext, _get_dask_config, _get_rabit_args
workers = tm.get_client_workers(client)
rabit_args = client.sync(_get_rabit_args, len(workers), _get_dask_config(), client)
assert not collective.is_distributed()
n_workers_from_dask = len(workers)
assert n_workers == n_workers_from_dask
def local_test(worker_id):
with CommunicatorContext(**rabit_args):
a = 1
assert collective.is_distributed()
a = np.array([a])
reduced = collective.allreduce(a, collective.Op.SUM)
assert reduced[0] == n_workers
worker_id = np.array([worker_id])
reduced = collective.allreduce(worker_id, collective.Op.MAX)
assert reduced == n_workers - 1
return 1
futures = client.map(local_test, range(len(workers)), workers=workers)
results = client.gather(futures)
assert sum(results) == n_workers
@pytest.mark.skipif(**tm.no_dask())
def test_rabit_ops():
from distributed import Client, LocalCluster
n_workers = 3
with LocalCluster(n_workers=n_workers) as cluster:
with Client(cluster) as client:
run_rabit_ops(client, n_workers)
def run_allreduce(pool, n_workers: int) -> None:
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=n_workers)
tracker.start()
args = tracker.worker_args()
def local_test(worker_id: int, rabit_args: Dict[str, Union[str, int]]) -> None:
x = np.full(shape=(1024 * 1024 * 32), fill_value=1.0)
with collective.CommunicatorContext(**rabit_args):
k = np.asarray([1.0])
for i in range(128):
m = collective.allreduce(k, collective.Op.SUM)
assert m == n_workers
y = collective.allreduce(x, collective.Op.SUM)
np.testing.assert_allclose(y, np.full_like(y, fill_value=float(n_workers)))
fn = update_wrapper(partial(local_test, rabit_args=args), local_test)
results = pool.map(fn, range(n_workers))
for r in results:
assert r is None
@pytest.mark.skipif(**tm.no_loky())
def test_allreduce() -> None:
from loky import get_reusable_executor
n_workers = 4
n_trials = 2
for _ in range(n_trials):
with get_reusable_executor(max_workers=n_workers) as pool:
run_allreduce(pool, n_workers)
def run_broadcast(pool, n_workers: int) -> None:
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=n_workers)
tracker.start()
args = tracker.worker_args()
def local_test(worker_id: int, rabit_args: Dict[str, Union[str, int]]):
with collective.CommunicatorContext(**rabit_args):
res = collective.broadcast(17, 0)
return res
fn = update_wrapper(partial(local_test, rabit_args=args), local_test)
results = pool.map(fn, range(n_workers))
np.testing.assert_allclose(np.array(list(results)), 17)
@pytest.mark.skipif(**tm.no_loky())
def test_broadcast():
from loky import get_reusable_executor
n_workers = 4
n_trials = 2
for _ in range(n_trials):
with get_reusable_executor(max_workers=n_workers) as pool:
run_broadcast(pool, n_workers)
@pytest.mark.skipif(**tm.no_ipv6())
@pytest.mark.skipif(**tm.no_dask())
def test_rabit_ops_ipv6():
import dask
from distributed import Client, LocalCluster
n_workers = 3
with dask.config.set({"xgboost.scheduler_address": "[::1]"}):
with LocalCluster(n_workers=n_workers, host="[::1]") as cluster:
with Client(cluster) as client:
run_rabit_ops(client, n_workers)
@pytest.mark.skipif(**tm.no_dask())
def test_rank_assignment() -> None:
from distributed import Client, LocalCluster
def local_test(worker_id):
with xgb.dask.CommunicatorContext(**args) as ctx:
task_id = ctx["DMLC_TASK_ID"]
matched = re.search(".*-([0-9]).*", task_id)
rank = collective.get_rank()
# As long as the number of workers is lesser than 10, rank and worker id
# should be the same
assert rank == int(matched.group(1))
with LocalCluster(n_workers=8) as cluster:
with Client(cluster) as client:
workers = tm.get_client_workers(client)
args = client.sync(
xgb.dask._get_rabit_args,
len(workers),
None,
client,
)
futures = client.map(local_test, range(len(workers)), workers=workers)
client.gather(futures)
ops_strategy = strategies.lists(
strategies.sampled_from(["broadcast", "allreduce_max", "allreduce_sum"])
)
@pytest.mark.skipif(**tm.no_loky())
@given(ops=ops_strategy, size=strategies.integers(2**4, 2**16))
@settings(
deadline=None,
print_blob=True,
max_examples=10,
suppress_health_check=[HealthCheck.function_scoped_fixture],
)
def test_ops_restart_comm(ops, size) -> None:
from loky import get_reusable_executor
n_workers = 8
def local_test(w: int, rabit_args: Dict[str, Union[str, int]]) -> None:
a = np.arange(0, n_workers)
with collective.CommunicatorContext(**rabit_args):
for op in ops:
if op == "broadcast":
b = collective.broadcast(a, root=1)
np.testing.assert_allclose(b, a)
elif op == "allreduce_max":
b = collective.allreduce(a, collective.Op.MAX)
np.testing.assert_allclose(b, a)
elif op == "allreduce_sum":
b = collective.allreduce(a, collective.Op.SUM)
np.testing.assert_allclose(a * n_workers, b)
else:
raise ValueError()
with get_reusable_executor(max_workers=n_workers) as pool:
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=n_workers)
tracker.start()
args = tracker.worker_args()
fn = update_wrapper(partial(local_test, rabit_args=args), local_test)
results = pool.map(fn, range(n_workers))
for r in results:
assert r is None
@pytest.mark.skipif(**tm.no_loky())
def test_ops_reuse_comm() -> None:
from loky import get_reusable_executor
rng = np.random.default_rng(1994)
n_examples = 10
ops = rng.choice(
["broadcast", "allreduce_sum", "allreduce_max"], size=n_examples
).tolist()
n_workers = 8
n_trials = 8
def local_test(w: int, rabit_args: Dict[str, Union[str, int]]) -> None:
a = np.arange(0, n_workers)
with collective.CommunicatorContext(**rabit_args):
for op in ops:
if op == "broadcast":
b = collective.broadcast(a, root=1)
assert np.allclose(b, a)
elif op == "allreduce_max":
c = np.full_like(a, collective.get_rank())
b = collective.allreduce(c, collective.Op.MAX)
assert np.allclose(b, n_workers - 1), b
elif op == "allreduce_sum":
b = collective.allreduce(a, collective.Op.SUM)
assert np.allclose(a * 8, b)
else:
raise ValueError()
with get_reusable_executor(max_workers=n_workers) as pool:
for _ in range(n_trials):
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=n_workers)
tracker.start()
args = tracker.worker_args()
fn = update_wrapper(partial(local_test, rabit_args=args), local_test)
results = pool.map(fn, range(n_workers))
for r in results:
assert r is None