- New parameter `on_host`. - Abstract format creation and stream creation into policy classes.
97 lines
3.5 KiB
C++
97 lines
3.5 KiB
C++
#include <gtest/gtest.h>
|
|
#include <algorithm>
|
|
|
|
#include "helpers.h"
|
|
#include "../../src/data/array_interface.h"
|
|
namespace xgboost {
|
|
|
|
TEST(RandomDataGenerator, DMatrix) {
|
|
size_t constexpr kRows { 16 }, kCols { 32 };
|
|
float constexpr kSparsity { 0.4f };
|
|
auto p_dmatrix = RandomDataGenerator{kRows, kCols, kSparsity}.GenerateDMatrix();
|
|
|
|
HostDeviceVector<float> csr_value;
|
|
HostDeviceVector<std::size_t> csr_rptr;
|
|
HostDeviceVector<bst_feature_t> csr_cidx;
|
|
RandomDataGenerator{kRows, kCols, kSparsity}.GenerateCSR(&csr_value, &csr_rptr, &csr_cidx);
|
|
|
|
HostDeviceVector<float> dense_data;
|
|
RandomDataGenerator{kRows, kCols, kSparsity}.GenerateDense(&dense_data);
|
|
|
|
auto it = std::copy_if(
|
|
dense_data.HostVector().begin(), dense_data.HostVector().end(),
|
|
dense_data.HostVector().begin(), [](float v) { return !std::isnan(v); });
|
|
|
|
CHECK_EQ(p_dmatrix->Info().num_row_, kRows);
|
|
CHECK_EQ(p_dmatrix->Info().num_col_, kCols);
|
|
|
|
for (auto const& page : p_dmatrix->GetBatches<SparsePage>()) {
|
|
size_t n_elements = page.data.Size();
|
|
CHECK_EQ(n_elements, it - dense_data.HostVector().begin());
|
|
CHECK_EQ(n_elements, csr_value.Size());
|
|
|
|
for (size_t i = 0; i < n_elements; ++i) {
|
|
CHECK_EQ(dense_data.HostVector()[i], csr_value.HostVector()[i]);
|
|
CHECK_EQ(dense_data.HostVector()[i], page.data.HostVector()[i].fvalue);
|
|
CHECK_EQ(page.data.HostVector()[i].index, csr_cidx.HostVector()[i]);
|
|
}
|
|
CHECK_EQ(page.offset.Size(), csr_rptr.Size());
|
|
for (size_t i = 0; i < p_dmatrix->Info().num_row_; ++i) {
|
|
CHECK_EQ(page.offset.HostVector()[i], csr_rptr.HostVector()[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(RandomDataGenerator, GenerateArrayInterfaceBatch) {
|
|
size_t constexpr kRows { 937 }, kCols { 100 }, kBatches { 13 };
|
|
float constexpr kSparsity { 0.4f };
|
|
|
|
HostDeviceVector<float> storage;
|
|
std::string array;
|
|
std::vector<std::string> batches;
|
|
std::tie(batches, array) =
|
|
RandomDataGenerator{kRows, kCols, kSparsity}.GenerateArrayInterfaceBatch(
|
|
&storage, kBatches);
|
|
CHECK_EQ(batches.size(), kBatches);
|
|
|
|
size_t rows = 0;
|
|
for (auto const &interface_str : batches) {
|
|
Json j_interface =
|
|
Json::Load({interface_str.c_str(), interface_str.size()});
|
|
ArrayInterfaceHandler::Validate(get<Object const>(j_interface));
|
|
CHECK_EQ(get<Integer>(j_interface["shape"][1]), kCols);
|
|
rows += get<Integer>(j_interface["shape"][0]);
|
|
}
|
|
CHECK_EQ(rows, kRows);
|
|
auto j_array = Json::Load({array.c_str(), array.size()});
|
|
CHECK_EQ(get<Integer>(j_array["shape"][0]), kRows);
|
|
CHECK_EQ(get<Integer>(j_array["shape"][1]), kCols);
|
|
}
|
|
|
|
TEST(RandomDataGenerator, SparseDMatrix) {
|
|
bst_idx_t constexpr kCols{100}, kBatches{13};
|
|
bst_idx_t n_samples{kBatches * 128};
|
|
dmlc::TemporaryDirectory tmpdir;
|
|
auto prefix = tmpdir.path + "/cache";
|
|
auto p_ext_fmat =
|
|
RandomDataGenerator{n_samples, kCols, 0.0}.Batches(kBatches).GenerateSparsePageDMatrix(prefix,
|
|
true);
|
|
|
|
auto p_fmat = RandomDataGenerator{n_samples, kCols, 0.0}.GenerateDMatrix(true);
|
|
|
|
SparsePage concat;
|
|
std::int32_t n_batches{0};
|
|
for (auto const& page : p_ext_fmat->GetBatches<SparsePage>()) {
|
|
concat.Push(page);
|
|
++n_batches;
|
|
}
|
|
ASSERT_EQ(n_batches, kBatches);
|
|
ASSERT_EQ(concat.Size(), n_samples);
|
|
|
|
for (auto const& page : p_fmat->GetBatches<SparsePage>()) {
|
|
ASSERT_EQ(page.data.ConstHostVector(), concat.data.ConstHostVector());
|
|
ASSERT_EQ(page.offset.ConstHostVector(), concat.offset.ConstHostVector());
|
|
}
|
|
}
|
|
} // namespace xgboost
|