xgboost/R-package/man/xgb.model.dt.tree.Rd
Vadim Khotilovich d7406e07f3 [R] xgb.plot.tree fixes (#1939)
* [R] a few fixes and improvements to xgb.plot.tree

* [R] deprecate n_first_tree replace with trees; fix types in xgb.model.dt.tree
2017-01-06 11:09:51 -08:00

67 lines
2.6 KiB
R

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/xgb.model.dt.tree.R
\name{xgb.model.dt.tree}
\alias{xgb.model.dt.tree}
\title{Parse a boosted tree model text dump}
\usage{
xgb.model.dt.tree(feature_names = NULL, model = NULL, text = NULL,
trees = NULL, ...)
}
\arguments{
\item{feature_names}{character vector of feature names. If the model already
contains feature names, this argument should be \code{NULL} (default value)}
\item{model}{object of class \code{xgb.Booster}}
\item{text}{\code{character} vector previously generated by the \code{xgb.dump}
function (where parameter \code{with_stats = TRUE} should have been set).}
\item{trees}{an integer vector of tree indices that should be parsed.
If set to \code{NULL}, all trees of the model are parsed.
It could be useful, e.g., in multiclass classification to get only
the trees of one certain class. IMPORTANT: the tree index in xgboost model
is zero-based (e.g., use \code{trees = 0:4} for first 5 trees).}
\item{...}{currently not used.}
}
\value{
A \code{data.table} with detailed information about model trees' nodes.
The columns of the \code{data.table} are:
\itemize{
\item \code{Tree}: ID of a tree in a model (integer)
\item \code{Node}: integer ID of a node in a tree (integer)
\item \code{ID}: identifier of a node in a model (character)
\item \code{Feature}: for a branch node, it's a feature id or name (when available);
for a leaf note, it simply labels it as \code{'Leaf'}
\item \code{Split}: location of the split for a branch node (split condition is always "less than")
\item \code{Yes}: ID of the next node when the split condition is met
\item \code{No}: ID of the next node when the split condition is not met
\item \code{Missing}: ID of the next node when branch value is missing
\item \code{Quality}: either the split gain (change in loss) or the leaf value
\item \code{Cover}: metric related to the number of observation either seen by a split
or collected by a leaf during training.
}
}
\description{
Parse a boosted tree model text dump into a \code{data.table} structure.
}
\examples{
# Basic use:
data(agaricus.train, package='xgboost')
bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2,
eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
(dt <- xgb.model.dt.tree(colnames(agaricus.train$data), bst))
# How to match feature names of splits that are following a current 'Yes' branch:
merge(dt, dt[, .(ID, Y.Feature=Feature)], by.x='Yes', by.y='ID', all.x=TRUE)[order(Tree,Node)]
}