* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces. - replacement was performed in the learner, boosters, predictors, updaters, and objective functions - only interfaces used in training were replaced; interfaces like PredictInstance() still use std::vector - refactoring necessary for replacement of interfaces was also performed, such as using HostDeviceVector in prediction cache * HostDeviceVector-based interfaces for custom objective function example plugin.
71 lines
2.9 KiB
Plaintext
71 lines
2.9 KiB
Plaintext
/*!
|
|
* Copyright 2017 XGBoost contributors
|
|
*/
|
|
#include <xgboost/objective.h>
|
|
|
|
#include "../helpers.h"
|
|
|
|
TEST(Objective, GPULinearRegressionGPair) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("gpu:reg:linear");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
CheckObjFunction(obj,
|
|
{0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{0, 0, 0, 0, 1, 1, 1, 1},
|
|
{1, 1, 1, 1, 1, 1, 1, 1},
|
|
{0, 0.1f, 0.9f, 1.0f, -1.0f, -0.9f, -0.1f, 0},
|
|
{1, 1, 1, 1, 1, 1, 1, 1});
|
|
|
|
ASSERT_NO_THROW(obj->DefaultEvalMetric());
|
|
}
|
|
|
|
TEST(Objective, GPULogisticRegressionGPair) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("gpu:reg:logistic");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
CheckObjFunction(obj,
|
|
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{ 0, 0, 0, 0, 1, 1, 1, 1},
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1},
|
|
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
|
|
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f});
|
|
}
|
|
|
|
TEST(Objective, GPULogisticRegressionBasic) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("gpu:reg:logistic");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
|
|
// test label validation
|
|
EXPECT_ANY_THROW(CheckObjFunction(obj, {0}, {10}, {1}, {0}, {0}))
|
|
<< "Expected error when label not in range [0,1f] for LogisticRegression";
|
|
|
|
// test ProbToMargin
|
|
EXPECT_NEAR(obj->ProbToMargin(0.1f), -2.197f, 0.01f);
|
|
EXPECT_NEAR(obj->ProbToMargin(0.5f), 0, 0.01f);
|
|
EXPECT_NEAR(obj->ProbToMargin(0.9f), 2.197f, 0.01f);
|
|
EXPECT_ANY_THROW(obj->ProbToMargin(10))
|
|
<< "Expected error when base_score not in range [0,1f] for LogisticRegression";
|
|
|
|
// test PredTransform
|
|
xgboost::HostDeviceVector<xgboost::bst_float> io_preds = {0, 0.1f, 0.5f, 0.9f, 1};
|
|
std::vector<xgboost::bst_float> out_preds = {0.5f, 0.524f, 0.622f, 0.710f, 0.731f};
|
|
obj->PredTransform(&io_preds);
|
|
auto& preds = io_preds.data_h();
|
|
for (int i = 0; i < static_cast<int>(io_preds.size()); ++i) {
|
|
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
|
|
}
|
|
}
|
|
|
|
TEST(Objective, GPULogisticRawGPair) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("gpu:binary:logitraw");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
CheckObjFunction(obj,
|
|
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{ 0, 0, 0, 0, 1, 1, 1, 1},
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1},
|
|
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
|
|
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f});
|
|
}
|