xgboost/src/tree/updater_fast_hist.cc
Andrew V. Adinetz d5992dd881 Replaced std::vector-based interfaces with HostDeviceVector-based interfaces. (#3116)
* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces.

- replacement was performed in the learner, boosters, predictors,
  updaters, and objective functions
- only interfaces used in training were replaced;
  interfaces like PredictInstance() still use std::vector
- refactoring necessary for replacement of interfaces was also performed,
  such as using HostDeviceVector in prediction cache

* HostDeviceVector-based interfaces for custom objective function example plugin.
2018-02-28 13:00:04 +13:00

972 lines
37 KiB
C++

/*!
* Copyright 2017 by Contributors
* \file updater_fast_hist.cc
* \brief use quantized feature values to construct a tree
* \author Philip Cho, Tianqi Checn
*/
#include <dmlc/timer.h>
#include <xgboost/tree_updater.h>
#include <cmath>
#include <vector>
#include <algorithm>
#include <queue>
#include <iomanip>
#include <numeric>
#include "./param.h"
#include "./fast_hist_param.h"
#include "../common/random.h"
#include "../common/bitmap.h"
#include "../common/sync.h"
#include "../common/hist_util.h"
#include "../common/row_set.h"
#include "../common/column_matrix.h"
namespace xgboost {
namespace tree {
using xgboost::common::HistCutMatrix;
using xgboost::common::GHistIndexMatrix;
using xgboost::common::GHistIndexBlockMatrix;
using xgboost::common::GHistIndexRow;
using xgboost::common::GHistEntry;
using xgboost::common::HistCollection;
using xgboost::common::RowSetCollection;
using xgboost::common::GHistRow;
using xgboost::common::GHistBuilder;
using xgboost::common::ColumnMatrix;
using xgboost::common::Column;
DMLC_REGISTRY_FILE_TAG(updater_fast_hist);
DMLC_REGISTER_PARAMETER(FastHistParam);
/*! \brief construct a tree using quantized feature values */
template<typename TStats, typename TConstraint>
class FastHistMaker: public TreeUpdater {
public:
void Init(const std::vector<std::pair<std::string, std::string> >& args) override {
// initialize pruner
if (!pruner_) {
pruner_.reset(TreeUpdater::Create("prune"));
}
pruner_->Init(args);
param.InitAllowUnknown(args);
fhparam.InitAllowUnknown(args);
is_gmat_initialized_ = false;
}
void Update(HostDeviceVector<bst_gpair>* gpair,
DMatrix* dmat,
const std::vector<RegTree*>& trees) override {
TStats::CheckInfo(dmat->info());
if (is_gmat_initialized_ == false) {
double tstart = dmlc::GetTime();
hmat_.Init(dmat, static_cast<uint32_t>(param.max_bin));
gmat_.cut = &hmat_;
gmat_.Init(dmat);
column_matrix_.Init(gmat_, fhparam);
if (fhparam.enable_feature_grouping > 0) {
gmatb_.Init(gmat_, column_matrix_, fhparam);
}
is_gmat_initialized_ = true;
if (param.debug_verbose > 0) {
LOG(INFO) << "Generating gmat: " << dmlc::GetTime() - tstart << " sec";
}
}
// rescale learning rate according to size of trees
float lr = param.learning_rate;
param.learning_rate = lr / trees.size();
TConstraint::Init(&param, dmat->info().num_col);
// build tree
if (!builder_) {
builder_.reset(new Builder(param, fhparam, std::move(pruner_)));
}
for (size_t i = 0; i < trees.size(); ++i) {
builder_->Update
(gmat_, gmatb_, column_matrix_, gpair, dmat, trees[i]);
}
param.learning_rate = lr;
}
bool UpdatePredictionCache(const DMatrix* data,
HostDeviceVector<bst_float>* out_preds) override {
if (!builder_ || param.subsample < 1.0f) {
return false;
} else {
return builder_->UpdatePredictionCache(data, out_preds);
}
}
protected:
// training parameter
TrainParam param;
FastHistParam fhparam;
// data sketch
HistCutMatrix hmat_;
// quantized data matrix
GHistIndexMatrix gmat_;
// (optional) data matrix with feature grouping
GHistIndexBlockMatrix gmatb_;
// column accessor
ColumnMatrix column_matrix_;
bool is_gmat_initialized_;
// data structure
struct NodeEntry {
/*! \brief statics for node entry */
TStats stats;
/*! \brief loss of this node, without split */
bst_float root_gain;
/*! \brief weight calculated related to current data */
float weight;
/*! \brief current best solution */
SplitEntry best;
// constructor
explicit NodeEntry(const TrainParam& param)
: stats(param), root_gain(0.0f), weight(0.0f) {
}
};
// actual builder that runs the algorithm
struct Builder {
public:
// constructor
explicit Builder(const TrainParam& param,
const FastHistParam& fhparam,
std::unique_ptr<TreeUpdater> pruner)
: param(param), fhparam(fhparam), pruner_(std::move(pruner)),
p_last_tree_(nullptr), p_last_fmat_(nullptr) {}
// update one tree, growing
virtual void Update(const GHistIndexMatrix& gmat,
const GHistIndexBlockMatrix& gmatb,
const ColumnMatrix& column_matrix,
HostDeviceVector<bst_gpair>* gpair,
DMatrix* p_fmat,
RegTree* p_tree) {
double gstart = dmlc::GetTime();
int num_leaves = 0;
unsigned timestamp = 0;
double tstart;
double time_init_data = 0;
double time_init_new_node = 0;
double time_build_hist = 0;
double time_evaluate_split = 0;
double time_apply_split = 0;
std::vector<bst_gpair>& gpair_h = gpair->data_h();
tstart = dmlc::GetTime();
this->InitData(gmat, gpair_h, *p_fmat, *p_tree);
std::vector<bst_uint> feat_set = feat_index;
time_init_data = dmlc::GetTime() - tstart;
// FIXME(hcho3): this code is broken when param.num_roots > 1. Please fix it
CHECK_EQ(p_tree->param.num_roots, 1)
<< "tree_method=hist does not support multiple roots at this moment";
for (int nid = 0; nid < p_tree->param.num_roots; ++nid) {
tstart = dmlc::GetTime();
hist_.AddHistRow(nid);
BuildHist(gpair_h, row_set_collection_[nid], gmat, gmatb, feat_set, hist_[nid]);
time_build_hist += dmlc::GetTime() - tstart;
tstart = dmlc::GetTime();
this->InitNewNode(nid, gmat, gpair_h, *p_fmat, *p_tree);
time_init_new_node += dmlc::GetTime() - tstart;
tstart = dmlc::GetTime();
this->EvaluateSplit(nid, gmat, hist_, *p_fmat, *p_tree, feat_set);
time_evaluate_split += dmlc::GetTime() - tstart;
qexpand_->push(ExpandEntry(nid, p_tree->GetDepth(nid),
snode[nid].best.loss_chg,
timestamp++));
++num_leaves;
}
while (!qexpand_->empty()) {
const ExpandEntry candidate = qexpand_->top();
const int nid = candidate.nid;
qexpand_->pop();
if (candidate.loss_chg <= rt_eps
|| (param.max_depth > 0 && candidate.depth == param.max_depth)
|| (param.max_leaves > 0 && num_leaves == param.max_leaves) ) {
(*p_tree)[nid].set_leaf(snode[nid].weight * param.learning_rate);
} else {
tstart = dmlc::GetTime();
this->ApplySplit(nid, gmat, column_matrix, hist_, *p_fmat, p_tree);
time_apply_split += dmlc::GetTime() - tstart;
tstart = dmlc::GetTime();
const int cleft = (*p_tree)[nid].cleft();
const int cright = (*p_tree)[nid].cright();
hist_.AddHistRow(cleft);
hist_.AddHistRow(cright);
if (row_set_collection_[cleft].size() < row_set_collection_[cright].size()) {
BuildHist(gpair_h, row_set_collection_[cleft], gmat, gmatb, feat_set, hist_[cleft]);
SubtractionTrick(hist_[cright], hist_[cleft], hist_[nid]);
} else {
BuildHist(gpair_h, row_set_collection_[cright], gmat, gmatb, feat_set, hist_[cright]);
SubtractionTrick(hist_[cleft], hist_[cright], hist_[nid]);
}
time_build_hist += dmlc::GetTime() - tstart;
tstart = dmlc::GetTime();
this->InitNewNode(cleft, gmat, gpair_h, *p_fmat, *p_tree);
this->InitNewNode(cright, gmat, gpair_h, *p_fmat, *p_tree);
time_init_new_node += dmlc::GetTime() - tstart;
tstart = dmlc::GetTime();
this->EvaluateSplit(cleft, gmat, hist_, *p_fmat, *p_tree, feat_set);
this->EvaluateSplit(cright, gmat, hist_, *p_fmat, *p_tree, feat_set);
time_evaluate_split += dmlc::GetTime() - tstart;
qexpand_->push(ExpandEntry(cleft, p_tree->GetDepth(cleft),
snode[cleft].best.loss_chg,
timestamp++));
qexpand_->push(ExpandEntry(cright, p_tree->GetDepth(cright),
snode[cright].best.loss_chg,
timestamp++));
++num_leaves; // give two and take one, as parent is no longer a leaf
}
}
// set all the rest expanding nodes to leaf
// This post condition is not needed in current code, but may be necessary
// when there are stopping rule that leaves qexpand non-empty
while (!qexpand_->empty()) {
const int nid = qexpand_->top().nid;
qexpand_->pop();
(*p_tree)[nid].set_leaf(snode[nid].weight * param.learning_rate);
}
// remember auxiliary statistics in the tree node
for (int nid = 0; nid < p_tree->param.num_nodes; ++nid) {
p_tree->stat(nid).loss_chg = snode[nid].best.loss_chg;
p_tree->stat(nid).base_weight = snode[nid].weight;
p_tree->stat(nid).sum_hess = static_cast<float>(snode[nid].stats.sum_hess);
snode[nid].stats.SetLeafVec(param, p_tree->leafvec(nid));
}
pruner_->Update(gpair, p_fmat, std::vector<RegTree*>{p_tree});
if (param.debug_verbose > 0) {
double total_time = dmlc::GetTime() - gstart;
LOG(INFO) << "\nInitData: "
<< std::fixed << std::setw(6) << std::setprecision(4) << time_init_data
<< " (" << std::fixed << std::setw(5) << std::setprecision(2)
<< time_init_data / total_time * 100 << "%)\n"
<< "InitNewNode: "
<< std::fixed << std::setw(6) << std::setprecision(4) << time_init_new_node
<< " (" << std::fixed << std::setw(5) << std::setprecision(2)
<< time_init_new_node / total_time * 100 << "%)\n"
<< "BuildHist: "
<< std::fixed << std::setw(6) << std::setprecision(4) << time_build_hist
<< " (" << std::fixed << std::setw(5) << std::setprecision(2)
<< time_build_hist / total_time * 100 << "%)\n"
<< "EvaluateSplit: "
<< std::fixed << std::setw(6) << std::setprecision(4) << time_evaluate_split
<< " (" << std::fixed << std::setw(5) << std::setprecision(2)
<< time_evaluate_split / total_time * 100 << "%)\n"
<< "ApplySplit: "
<< std::fixed << std::setw(6) << std::setprecision(4) << time_apply_split
<< " (" << std::fixed << std::setw(5) << std::setprecision(2)
<< time_apply_split / total_time * 100 << "%)\n"
<< "========================================\n"
<< "Total: "
<< std::fixed << std::setw(6) << std::setprecision(4) << total_time;
}
}
inline void BuildHist(const std::vector<bst_gpair>& gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix& gmat,
const GHistIndexBlockMatrix& gmatb,
const std::vector<bst_uint>& feat_set,
GHistRow hist) {
if (fhparam.enable_feature_grouping > 0) {
hist_builder_.BuildBlockHist(gpair, row_indices, gmatb, feat_set, hist);
} else {
hist_builder_.BuildHist(gpair, row_indices, gmat, feat_set, hist);
}
}
inline void SubtractionTrick(GHistRow self, GHistRow sibling, GHistRow parent) {
hist_builder_.SubtractionTrick(self, sibling, parent);
}
inline bool UpdatePredictionCache(const DMatrix* data,
HostDeviceVector<bst_float>* p_out_preds) {
std::vector<bst_float>& out_preds = p_out_preds->data_h();
// p_last_fmat_ is a valid pointer as long as UpdatePredictionCache() is called in
// conjunction with Update().
if (!p_last_fmat_ || !p_last_tree_ || data != p_last_fmat_) {
return false;
}
if (leaf_value_cache_.empty()) {
leaf_value_cache_.resize(p_last_tree_->param.num_nodes,
std::numeric_limits<float>::infinity());
}
CHECK_GT(out_preds.size(), 0U);
for (const RowSetCollection::Elem rowset : row_set_collection_) {
if (rowset.begin != nullptr && rowset.end != nullptr) {
int nid = rowset.node_id;
bst_float leaf_value;
// if a node is marked as deleted by the pruner, traverse upward to locate
// a non-deleted leaf.
if ((*p_last_tree_)[nid].is_deleted()) {
while ((*p_last_tree_)[nid].is_deleted()) {
nid = (*p_last_tree_)[nid].parent();
}
CHECK((*p_last_tree_)[nid].is_leaf());
}
leaf_value = (*p_last_tree_)[nid].leaf_value();
for (const size_t* it = rowset.begin; it < rowset.end; ++it) {
out_preds[*it] += leaf_value;
}
}
}
return true;
}
protected:
// initialize temp data structure
inline void InitData(const GHistIndexMatrix& gmat,
const std::vector<bst_gpair>& gpair,
const DMatrix& fmat,
const RegTree& tree) {
CHECK_EQ(tree.param.num_nodes, tree.param.num_roots)
<< "ColMakerHist: can only grow new tree";
CHECK((param.max_depth > 0 || param.max_leaves > 0))
<< "max_depth or max_leaves cannot be both 0 (unlimited); "
<< "at least one should be a positive quantity.";
if (param.grow_policy == TrainParam::kDepthWise) {
CHECK(param.max_depth > 0) << "max_depth cannot be 0 (unlimited) "
<< "when grow_policy is depthwise.";
}
const auto& info = fmat.info();
{
// initialize the row set
row_set_collection_.Clear();
// clear local prediction cache
leaf_value_cache_.clear();
// initialize histogram collection
uint32_t nbins = gmat.cut->row_ptr.back();
hist_.Init(nbins);
// initialize histogram builder
#pragma omp parallel
{
this->nthread = omp_get_num_threads();
}
hist_builder_.Init(this->nthread, nbins);
CHECK_EQ(info.root_index.size(), 0U);
std::vector<size_t>& row_indices = row_set_collection_.row_indices_;
// mark subsample and build list of member rows
if (param.subsample < 1.0f) {
std::bernoulli_distribution coin_flip(param.subsample);
auto& rnd = common::GlobalRandom();
for (size_t i = 0; i < info.num_row; ++i) {
if (gpair[i].GetHess() >= 0.0f && coin_flip(rnd)) {
row_indices.push_back(i);
}
}
} else {
for (size_t i = 0; i < info.num_row; ++i) {
if (gpair[i].GetHess() >= 0.0f) {
row_indices.push_back(i);
}
}
}
row_set_collection_.Init();
}
{
/* determine layout of data */
const size_t nrow = info.num_row;
const size_t ncol = info.num_col;
const size_t nnz = info.num_nonzero;
// number of discrete bins for feature 0
const uint32_t nbins_f0 = gmat.cut->row_ptr[1] - gmat.cut->row_ptr[0];
if (nrow * ncol == nnz) {
// dense data with zero-based indexing
data_layout_ = kDenseDataZeroBased;
} else if (nbins_f0 == 0 && nrow * (ncol - 1) == nnz) {
// dense data with one-based indexing
data_layout_ = kDenseDataOneBased;
} else {
// sparse data
data_layout_ = kSparseData;
}
}
{
// store a pointer to the tree
p_last_tree_ = &tree;
// store a pointer to training data
p_last_fmat_ = &fmat;
// initialize feature index
bst_uint ncol = static_cast<bst_uint>(info.num_col);
feat_index.clear();
if (data_layout_ == kDenseDataOneBased) {
for (bst_uint i = 1; i < ncol; ++i) {
feat_index.push_back(i);
}
} else {
for (bst_uint i = 0; i < ncol; ++i) {
feat_index.push_back(i);
}
}
bst_uint n = std::max(static_cast<bst_uint>(1),
static_cast<bst_uint>(param.colsample_bytree * feat_index.size()));
std::shuffle(feat_index.begin(), feat_index.end(), common::GlobalRandom());
CHECK_GT(param.colsample_bytree, 0U)
<< "colsample_bytree cannot be zero.";
feat_index.resize(n);
}
if (data_layout_ == kDenseDataZeroBased || data_layout_ == kDenseDataOneBased) {
/* specialized code for dense data:
choose the column that has a least positive number of discrete bins.
For dense data (with no missing value),
the sum of gradient histogram is equal to snode[nid] */
const std::vector<uint32_t>& row_ptr = gmat.cut->row_ptr;
const bst_uint nfeature = static_cast<bst_uint>(row_ptr.size() - 1);
uint32_t min_nbins_per_feature = 0;
for (bst_uint i = 0; i < nfeature; ++i) {
const uint32_t nbins = row_ptr[i + 1] - row_ptr[i];
if (nbins > 0) {
if (min_nbins_per_feature == 0 || min_nbins_per_feature > nbins) {
min_nbins_per_feature = nbins;
fid_least_bins_ = i;
}
}
}
CHECK_GT(min_nbins_per_feature, 0U);
}
{
snode.reserve(256);
snode.clear();
}
{
if (param.grow_policy == TrainParam::kLossGuide) {
qexpand_.reset(new ExpandQueue(loss_guide));
} else {
qexpand_.reset(new ExpandQueue(depth_wise));
}
}
}
inline void EvaluateSplit(int nid,
const GHistIndexMatrix& gmat,
const HistCollection& hist,
const DMatrix& fmat,
const RegTree& tree,
const std::vector<bst_uint>& feat_set) {
// start enumeration
const MetaInfo& info = fmat.info();
const bst_uint nfeature = static_cast<bst_uint>(feat_set.size());
const bst_omp_uint nthread = static_cast<bst_omp_uint>(this->nthread);
best_split_tloc_.resize(nthread);
#pragma omp parallel for schedule(static) num_threads(nthread)
for (bst_omp_uint tid = 0; tid < nthread; ++tid) {
best_split_tloc_[tid] = snode[nid].best;
}
#pragma omp parallel for schedule(dynamic) num_threads(nthread)
for (bst_omp_uint i = 0; i < nfeature; ++i) {
const bst_uint fid = feat_set[i];
const unsigned tid = omp_get_thread_num();
this->EnumerateSplit(-1, gmat, hist[nid], snode[nid], constraints_[nid], info,
&best_split_tloc_[tid], fid);
this->EnumerateSplit(+1, gmat, hist[nid], snode[nid], constraints_[nid], info,
&best_split_tloc_[tid], fid);
}
for (unsigned tid = 0; tid < nthread; ++tid) {
snode[nid].best.Update(best_split_tloc_[tid]);
}
}
inline void ApplySplit(int nid,
const GHistIndexMatrix& gmat,
const ColumnMatrix& column_matrix,
const HistCollection& hist,
const DMatrix& fmat,
RegTree* p_tree) {
XGBOOST_TYPE_SWITCH(column_matrix.dtype, {
ApplySplit_<DType>(nid, gmat, column_matrix, hist, fmat, p_tree);
});
}
template <typename T>
inline void ApplySplit_(int nid,
const GHistIndexMatrix& gmat,
const ColumnMatrix& column_matrix,
const HistCollection& hist,
const DMatrix& fmat,
RegTree* p_tree) {
// TODO(hcho3): support feature sampling by levels
/* 1. Create child nodes */
NodeEntry& e = snode[nid];
p_tree->AddChilds(nid);
(*p_tree)[nid].set_split(e.best.split_index(), e.best.split_value, e.best.default_left());
// mark right child as 0, to indicate fresh leaf
int cleft = (*p_tree)[nid].cleft();
int cright = (*p_tree)[nid].cright();
(*p_tree)[cleft].set_leaf(0.0f, 0);
(*p_tree)[cright].set_leaf(0.0f, 0);
/* 2. Categorize member rows */
const bst_omp_uint nthread = static_cast<bst_omp_uint>(this->nthread);
row_split_tloc_.resize(nthread);
for (bst_omp_uint i = 0; i < nthread; ++i) {
row_split_tloc_[i].left.clear();
row_split_tloc_[i].right.clear();
}
const bool default_left = (*p_tree)[nid].default_left();
const bst_uint fid = (*p_tree)[nid].split_index();
const bst_float split_pt = (*p_tree)[nid].split_cond();
const uint32_t lower_bound = gmat.cut->row_ptr[fid];
const uint32_t upper_bound = gmat.cut->row_ptr[fid + 1];
int32_t split_cond = -1;
// convert floating-point split_pt into corresponding bin_id
// split_cond = -1 indicates that split_pt is less than all known cut points
CHECK_LT(upper_bound,
static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
for (uint32_t i = lower_bound; i < upper_bound; ++i) {
if (split_pt == gmat.cut->cut[i]) {
split_cond = static_cast<int32_t>(i);
}
}
const auto& rowset = row_set_collection_[nid];
Column<T> column = column_matrix.GetColumn<T>(fid);
if (column.type == xgboost::common::kDenseColumn) {
ApplySplitDenseData(rowset, gmat, &row_split_tloc_, column, split_cond,
default_left);
} else {
ApplySplitSparseData(rowset, gmat, &row_split_tloc_, column, lower_bound,
upper_bound, split_cond, default_left);
}
row_set_collection_.AddSplit(
nid, row_split_tloc_, (*p_tree)[nid].cleft(), (*p_tree)[nid].cright());
}
template<typename T>
inline void ApplySplitDenseData(const RowSetCollection::Elem rowset,
const GHistIndexMatrix& gmat,
std::vector<RowSetCollection::Split>* p_row_split_tloc,
const Column<T>& column,
bst_int split_cond,
bool default_left) {
std::vector<RowSetCollection::Split>& row_split_tloc = *p_row_split_tloc;
const int K = 8; // loop unrolling factor
const size_t nrows = rowset.end - rowset.begin;
const size_t rest = nrows % K;
#pragma omp parallel for num_threads(nthread) schedule(static)
for (bst_omp_uint i = 0; i < nrows - rest; i += K) {
const bst_uint tid = omp_get_thread_num();
auto& left = row_split_tloc[tid].left;
auto& right = row_split_tloc[tid].right;
size_t rid[K];
T rbin[K];
for (int k = 0; k < K; ++k) {
rid[k] = rowset.begin[i + k];
}
for (int k = 0; k < K; ++k) {
rbin[k] = column.index[rid[k]];
}
for (int k = 0; k < K; ++k) {
if (rbin[k] == std::numeric_limits<T>::max()) { // missing value
if (default_left) {
left.push_back(rid[k]);
} else {
right.push_back(rid[k]);
}
} else {
CHECK_LT(rbin[k] + column.index_base,
static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
if (static_cast<int32_t>(rbin[k] + column.index_base) <= split_cond) {
left.push_back(rid[k]);
} else {
right.push_back(rid[k]);
}
}
}
}
for (size_t i = nrows - rest; i < nrows; ++i) {
auto& left = row_split_tloc[nthread-1].left;
auto& right = row_split_tloc[nthread-1].right;
const size_t rid = rowset.begin[i];
const T rbin = column.index[rid];
if (rbin == std::numeric_limits<T>::max()) { // missing value
if (default_left) {
left.push_back(rid);
} else {
right.push_back(rid);
}
} else {
CHECK_LT(rbin + column.index_base,
static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
if (static_cast<int32_t>(rbin + column.index_base) <= split_cond) {
left.push_back(rid);
} else {
right.push_back(rid);
}
}
}
}
inline void ApplySplitSparseDataOld(const RowSetCollection::Elem rowset,
const GHistIndexMatrix& gmat,
std::vector<RowSetCollection::Split>* p_row_split_tloc,
bst_uint lower_bound,
bst_uint upper_bound,
bst_int split_cond,
bool default_left) {
std::vector<RowSetCollection::Split>& row_split_tloc = *p_row_split_tloc;
const int K = 8; // loop unrolling factor
const size_t nrows = rowset.end - rowset.begin;
const size_t rest = nrows % K;
#pragma omp parallel for num_threads(nthread) schedule(static)
for (bst_omp_uint i = 0; i < nrows - rest; i += K) {
size_t rid[K];
GHistIndexRow row[K];
const uint32_t* p[K];
bst_uint tid = omp_get_thread_num();
auto& left = row_split_tloc[tid].left;
auto& right = row_split_tloc[tid].right;
for (int k = 0; k < K; ++k) {
rid[k] = rowset.begin[i + k];
}
for (int k = 0; k < K; ++k) {
row[k] = gmat[rid[k]];
}
for (int k = 0; k < K; ++k) {
p[k] = std::lower_bound(row[k].index, row[k].index + row[k].size, lower_bound);
}
for (int k = 0; k < K; ++k) {
if (p[k] != row[k].index + row[k].size && *p[k] < upper_bound) {
CHECK_LT(*p[k],
static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
if (static_cast<int32_t>(*p[k]) <= split_cond) {
left.push_back(rid[k]);
} else {
right.push_back(rid[k]);
}
} else {
if (default_left) {
left.push_back(rid[k]);
} else {
right.push_back(rid[k]);
}
}
}
}
for (size_t i = nrows - rest; i < nrows; ++i) {
const size_t rid = rowset.begin[i];
const auto row = gmat[rid];
const auto p = std::lower_bound(row.index, row.index + row.size, lower_bound);
auto& left = row_split_tloc[0].left;
auto& right = row_split_tloc[0].right;
if (p != row.index + row.size && *p < upper_bound) {
CHECK_LT(*p, static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
if (static_cast<int32_t>(*p) <= split_cond) {
left.push_back(rid);
} else {
right.push_back(rid);
}
} else {
if (default_left) {
left.push_back(rid);
} else {
right.push_back(rid);
}
}
}
}
template<typename T>
inline void ApplySplitSparseData(const RowSetCollection::Elem rowset,
const GHistIndexMatrix& gmat,
std::vector<RowSetCollection::Split>* p_row_split_tloc,
const Column<T>& column,
bst_uint lower_bound,
bst_uint upper_bound,
bst_int split_cond,
bool default_left) {
std::vector<RowSetCollection::Split>& row_split_tloc = *p_row_split_tloc;
const size_t nrows = rowset.end - rowset.begin;
#pragma omp parallel num_threads(nthread)
{
const size_t tid = static_cast<size_t>(omp_get_thread_num());
const size_t ibegin = tid * nrows / nthread;
const size_t iend = (tid + 1) * nrows / nthread;
if (ibegin < iend) { // ensure that [ibegin, iend) is nonempty range
// search first nonzero row with index >= rowset[ibegin]
const size_t* p = std::lower_bound(column.row_ind,
column.row_ind + column.len,
rowset.begin[ibegin]);
auto& left = row_split_tloc[tid].left;
auto& right = row_split_tloc[tid].right;
if (p != column.row_ind + column.len && *p <= rowset.begin[iend - 1]) {
size_t cursor = p - column.row_ind;
for (size_t i = ibegin; i < iend; ++i) {
const size_t rid = rowset.begin[i];
while (cursor < column.len
&& column.row_ind[cursor] < rid
&& column.row_ind[cursor] <= rowset.begin[iend - 1]) {
++cursor;
}
if (cursor < column.len && column.row_ind[cursor] == rid) {
const T rbin = column.index[cursor];
CHECK_LT(rbin + column.index_base,
static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
if (static_cast<int32_t>(rbin + column.index_base) <= split_cond) {
left.push_back(rid);
} else {
right.push_back(rid);
}
++cursor;
} else {
// missing value
if (default_left) {
left.push_back(rid);
} else {
right.push_back(rid);
}
}
}
} else { // all rows in [ibegin, iend) have missing values
if (default_left) {
for (size_t i = ibegin; i < iend; ++i) {
const size_t rid = rowset.begin[i];
left.push_back(rid);
}
} else {
for (size_t i = ibegin; i < iend; ++i) {
const size_t rid = rowset.begin[i];
right.push_back(rid);
}
}
}
}
}
}
inline void InitNewNode(int nid,
const GHistIndexMatrix& gmat,
const std::vector<bst_gpair>& gpair,
const DMatrix& fmat,
const RegTree& tree) {
{
snode.resize(tree.param.num_nodes, NodeEntry(param));
constraints_.resize(tree.param.num_nodes);
}
// setup constraints before calculating the weight
{
auto& stats = snode[nid].stats;
if (data_layout_ == kDenseDataZeroBased || data_layout_ == kDenseDataOneBased) {
/* specialized code for dense data
For dense data (with no missing value),
the sum of gradient histogram is equal to snode[nid] */
GHistRow hist = hist_[nid];
const std::vector<uint32_t>& row_ptr = gmat.cut->row_ptr;
const uint32_t ibegin = row_ptr[fid_least_bins_];
const uint32_t iend = row_ptr[fid_least_bins_ + 1];
for (uint32_t i = ibegin; i < iend; ++i) {
const GHistEntry et = hist.begin[i];
stats.Add(et.sum_grad, et.sum_hess);
}
} else {
const RowSetCollection::Elem e = row_set_collection_[nid];
for (const size_t* it = e.begin; it < e.end; ++it) {
stats.Add(gpair[*it]);
}
}
if (!tree[nid].is_root()) {
const int pid = tree[nid].parent();
constraints_[pid].SetChild(param, tree[pid].split_index(),
snode[tree[pid].cleft()].stats,
snode[tree[pid].cright()].stats,
&constraints_[tree[pid].cleft()],
&constraints_[tree[pid].cright()]);
}
}
// calculating the weights
{
snode[nid].root_gain = static_cast<float>(
constraints_[nid].CalcGain(param, snode[nid].stats));
snode[nid].weight = static_cast<float>(
constraints_[nid].CalcWeight(param, snode[nid].stats));
}
}
// enumerate the split values of specific feature
inline void EnumerateSplit(int d_step,
const GHistIndexMatrix& gmat,
const GHistRow& hist,
const NodeEntry& snode,
const TConstraint& constraint,
const MetaInfo& info,
SplitEntry* p_best,
bst_uint fid) {
CHECK(d_step == +1 || d_step == -1);
// aliases
const std::vector<uint32_t>& cut_ptr = gmat.cut->row_ptr;
const std::vector<bst_float>& cut_val = gmat.cut->cut;
// statistics on both sides of split
TStats c(param);
TStats e(param);
// best split so far
SplitEntry best;
// bin boundaries
CHECK_LE(cut_ptr[fid],
static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
CHECK_LE(cut_ptr[fid + 1],
static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
// imin: index (offset) of the minimum value for feature fid
// need this for backward enumeration
const int32_t imin = static_cast<int32_t>(cut_ptr[fid]);
// ibegin, iend: smallest/largest cut points for feature fid
// use int to allow for value -1
int32_t ibegin, iend;
if (d_step > 0) {
ibegin = static_cast<int32_t>(cut_ptr[fid]);
iend = static_cast<int32_t>(cut_ptr[fid + 1]);
} else {
ibegin = static_cast<int32_t>(cut_ptr[fid + 1]) - 1;
iend = static_cast<int32_t>(cut_ptr[fid]) - 1;
}
for (int32_t i = ibegin; i != iend; i += d_step) {
// start working
// try to find a split
e.Add(hist.begin[i].sum_grad, hist.begin[i].sum_hess);
if (e.sum_hess >= param.min_child_weight) {
c.SetSubstract(snode.stats, e);
if (c.sum_hess >= param.min_child_weight) {
bst_float loss_chg;
bst_float split_pt;
if (d_step > 0) {
// forward enumeration: split at right bound of each bin
loss_chg = static_cast<bst_float>(
constraint.CalcSplitGain(param, fid, e, c) -
snode.root_gain);
split_pt = cut_val[i];
} else {
// backward enumeration: split at left bound of each bin
loss_chg = static_cast<bst_float>(
constraint.CalcSplitGain(param, fid, c, e) -
snode.root_gain);
if (i == imin) {
// for leftmost bin, left bound is the smallest feature value
split_pt = gmat.cut->min_val[fid];
} else {
split_pt = cut_val[i - 1];
}
}
best.Update(loss_chg, fid, split_pt, d_step == -1);
}
}
}
p_best->Update(best);
}
/* tree growing policies */
struct ExpandEntry {
int nid;
int depth;
bst_float loss_chg;
unsigned timestamp;
ExpandEntry(int nid, int depth, bst_float loss_chg, unsigned tstmp)
: nid(nid), depth(depth), loss_chg(loss_chg), timestamp(tstmp) {}
};
inline static bool depth_wise(ExpandEntry lhs, ExpandEntry rhs) {
if (lhs.depth == rhs.depth) {
return lhs.timestamp > rhs.timestamp; // favor small timestamp
} else {
return lhs.depth > rhs.depth; // favor small depth
}
}
inline static bool loss_guide(ExpandEntry lhs, ExpandEntry rhs) {
if (lhs.loss_chg == rhs.loss_chg) {
return lhs.timestamp > rhs.timestamp; // favor small timestamp
} else {
return lhs.loss_chg < rhs.loss_chg; // favor large loss_chg
}
}
// --data fields--
const TrainParam& param;
const FastHistParam& fhparam;
// number of omp thread used during training
int nthread;
// Per feature: shuffle index of each feature index
std::vector<bst_uint> feat_index;
// the internal row sets
RowSetCollection row_set_collection_;
// the temp space for split
std::vector<RowSetCollection::Split> row_split_tloc_;
std::vector<SplitEntry> best_split_tloc_;
/*! \brief TreeNode Data: statistics for each constructed node */
std::vector<NodeEntry> snode;
/*! \brief culmulative histogram of gradients. */
HistCollection hist_;
/*! \brief feature with least # of bins. to be used for dense specialization
of InitNewNode() */
uint32_t fid_least_bins_;
/*! \brief local prediction cache; maps node id to leaf value */
std::vector<float> leaf_value_cache_;
GHistBuilder hist_builder_;
std::unique_ptr<TreeUpdater> pruner_;
// back pointers to tree and data matrix
const RegTree* p_last_tree_;
const DMatrix* p_last_fmat_;
// constraint value
std::vector<TConstraint> constraints_;
typedef std::priority_queue<ExpandEntry,
std::vector<ExpandEntry>,
std::function<bool(ExpandEntry, ExpandEntry)>> ExpandQueue;
std::unique_ptr<ExpandQueue> qexpand_;
enum DataLayout { kDenseDataZeroBased, kDenseDataOneBased, kSparseData };
DataLayout data_layout_;
};
std::unique_ptr<Builder> builder_;
std::unique_ptr<TreeUpdater> pruner_;
};
XGBOOST_REGISTER_TREE_UPDATER(FastHistMaker, "grow_fast_histmaker")
.describe("Grow tree using quantized histogram.")
.set_body([]() {
return new FastHistMaker<GradStats, NoConstraint>();
});
} // namespace tree
} // namespace xgboost