xgboost/plugin/example/custom_obj.cc
Andrew V. Adinetz d5992dd881 Replaced std::vector-based interfaces with HostDeviceVector-based interfaces. (#3116)
* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces.

- replacement was performed in the learner, boosters, predictors,
  updaters, and objective functions
- only interfaces used in training were replaced;
  interfaces like PredictInstance() still use std::vector
- refactoring necessary for replacement of interfaces was also performed,
  such as using HostDeviceVector in prediction cache

* HostDeviceVector-based interfaces for custom objective function example plugin.
2018-02-28 13:00:04 +13:00

83 lines
2.8 KiB
C++

/*!
* Copyright 2015 by Contributors
* \file custom_metric.cc
* \brief This is an example to define plugin of xgboost.
* This plugin defines the additional metric function.
*/
#include <xgboost/base.h>
#include <dmlc/parameter.h>
#include <xgboost/objective.h>
namespace xgboost {
namespace obj {
// This is a helpful data structure to define parameters
// You do not have to use it.
// see http://dmlc-core.readthedocs.org/en/latest/parameter.html
// for introduction of this module.
struct MyLogisticParam : public dmlc::Parameter<MyLogisticParam> {
float scale_neg_weight;
// declare parameters
DMLC_DECLARE_PARAMETER(MyLogisticParam) {
DMLC_DECLARE_FIELD(scale_neg_weight).set_default(1.0f).set_lower_bound(0.0f)
.describe("Scale the weight of negative examples by this factor");
}
};
DMLC_REGISTER_PARAMETER(MyLogisticParam);
// Define a customized logistic regression objective in C++.
// Implement the interface.
class MyLogistic : public ObjFunction {
public:
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.InitAllowUnknown(args);
}
void GetGradient(HostDeviceVector<bst_float> *preds,
const MetaInfo &info,
int iter,
HostDeviceVector<bst_gpair> *out_gpair) override {
out_gpair->resize(preds->size());
std::vector<bst_float>& preds_h = preds->data_h();
std::vector<bst_gpair>& out_gpair_h = out_gpair->data_h();
for (size_t i = 0; i < preds_h.size(); ++i) {
bst_float w = info.GetWeight(i);
// scale the negative examples!
if (info.labels[i] == 0.0f) w *= param_.scale_neg_weight;
// logistic transformation
bst_float p = 1.0f / (1.0f + std::exp(-preds_h[i]));
// this is the gradient
bst_float grad = (p - info.labels[i]) * w;
// this is the second order gradient
bst_float hess = p * (1.0f - p) * w;
out_gpair_h.at(i) = bst_gpair(grad, hess);
}
}
const char* DefaultEvalMetric() const override {
return "error";
}
void PredTransform(HostDeviceVector<bst_float> *io_preds) override {
// transform margin value to probability.
std::vector<bst_float> &preds = io_preds->data_h();
for (size_t i = 0; i < preds.size(); ++i) {
preds[i] = 1.0f / (1.0f + std::exp(-preds[i]));
}
}
bst_float ProbToMargin(bst_float base_score) const override {
// transform probability to margin value
return -std::log(1.0f / base_score - 1.0f);
}
private:
MyLogisticParam param_;
};
// Finally register the objective function.
// After it succeeds you can try use xgboost with objective=mylogistic
XGBOOST_REGISTER_OBJECTIVE(MyLogistic, "mylogistic")
.describe("User defined logistic regression plugin")
.set_body([]() { return new MyLogistic(); });
} // namespace obj
} // namespace xgboost