xgboost/tests/cpp/objective/test_multiclass_obj.cc
trivialfis d594b11f35 Implement transform to reduce CPU/GPU code duplication. (#3643)
* Implement Transform class.
* Add tests for softmax.
* Use Transform in regression, softmax and hinge objectives, except for Cox.
* Mark old gpu objective functions deprecated.
* static_assert for softmax.
* Split up multi-gpu tests.
2018-10-02 15:06:21 +13:00

61 lines
1.9 KiB
C++

/*!
* Copyright 2018 XGBoost contributors
*/
#include <xgboost/objective.h>
#include "../helpers.h"
TEST(Objective, DeclareUnifiedTest(SoftmaxMultiClassObjGPair)) {
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("multi:softmax");
std::vector<std::pair<std::string, std::string>> args {{"num_class", "3"}};
obj->Configure(args);
CheckObjFunction(obj,
{1, 0, 2, 2, 0, 1}, // preds
{1.0, 0.0}, // labels
{1.0, 1.0}, // weights
{0.24f, -0.91f, 0.66f, -0.33f, 0.09f, 0.24f}, // grad
{0.36, 0.16, 0.44, 0.45, 0.16, 0.37}); // hess
ASSERT_NO_THROW(obj->DefaultEvalMetric());
delete obj;
}
TEST(Objective, DeclareUnifiedTest(SoftmaxMultiClassBasic)) {
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("multi:softmax");
std::vector<std::pair<std::string, std::string>> args
{std::pair<std::string, std::string>("num_class", "3")};
obj->Configure(args);
xgboost::HostDeviceVector<xgboost::bst_float> io_preds = {2.0f, 0.0f, 1.0f,
1.0f, 0.0f, 2.0f};
std::vector<xgboost::bst_float> out_preds = {0.0f, 2.0f};
obj->PredTransform(&io_preds);
auto& preds = io_preds.HostVector();
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
}
delete obj;
}
TEST(Objective, DeclareUnifiedTest(SoftprobMultiClassBasic)) {
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("multi:softprob");
std::vector<std::pair<std::string, std::string>> args
{std::pair<std::string, std::string>("num_class", "3")};
obj->Configure(args);
xgboost::HostDeviceVector<xgboost::bst_float> io_preds = {2.0f, 0.0f, 1.0f};
std::vector<xgboost::bst_float> out_preds = {0.66524096f, 0.09003057f, 0.24472847f};
obj->PredTransform(&io_preds);
auto& preds = io_preds.HostVector();
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
}
delete obj;
}