xgboost/old_src/tree/updater_refresh-inl.hpp
2016-01-16 10:24:00 -08:00

158 lines
5.5 KiB
C++

/*!
* Copyright 2014 by Contributors
* \file updater_refresh-inl.hpp
* \brief refresh the statistics and leaf value on the tree on the dataset
* \author Tianqi Chen
*/
#ifndef XGBOOST_TREE_UPDATER_REFRESH_INL_HPP_
#define XGBOOST_TREE_UPDATER_REFRESH_INL_HPP_
#include <vector>
#include <limits>
#include "../sync/sync.h"
#include "./param.h"
#include "./updater.h"
#include "../utils/omp.h"
namespace xgboost {
namespace tree {
/*! \brief pruner that prunes a tree after growing finishs */
template<typename TStats>
class TreeRefresher: public IUpdater {
public:
virtual ~TreeRefresher(void) {}
// set training parameter
virtual void SetParam(const char *name, const char *val) {
param.SetParam(name, val);
}
// update the tree, do pruning
virtual void Update(const std::vector<bst_gpair> &gpair,
IFMatrix *p_fmat,
const BoosterInfo &info,
const std::vector<RegTree*> &trees) {
if (trees.size() == 0) return;
// number of threads
// thread temporal space
std::vector< std::vector<TStats> > stemp;
std::vector<RegTree::FVec> fvec_temp;
// setup temp space for each thread
int nthread;
#pragma omp parallel
{
nthread = omp_get_num_threads();
}
fvec_temp.resize(nthread, RegTree::FVec());
stemp.resize(nthread, std::vector<TStats>());
#pragma omp parallel
{
int tid = omp_get_thread_num();
int num_nodes = 0;
for (size_t i = 0; i < trees.size(); ++i) {
num_nodes += trees[i]->param.num_nodes;
}
stemp[tid].resize(num_nodes, TStats(param));
std::fill(stemp[tid].begin(), stemp[tid].end(), TStats(param));
fvec_temp[tid].Init(trees[0]->param.num_feature);
}
// if it is C++11, use lazy evaluation for Allreduce,
// to gain speedup in recovery
#if __cplusplus >= 201103L
auto lazy_get_stats = [&]()
#endif
{
// start accumulating statistics
utils::IIterator<RowBatch> *iter = p_fmat->RowIterator();
iter->BeforeFirst();
while (iter->Next()) {
const RowBatch &batch = iter->Value();
utils::Check(batch.size < std::numeric_limits<unsigned>::max(),
"too large batch size ");
const bst_omp_uint nbatch = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nbatch; ++i) {
RowBatch::Inst inst = batch[i];
const int tid = omp_get_thread_num();
const bst_uint ridx = static_cast<bst_uint>(batch.base_rowid + i);
RegTree::FVec &feats = fvec_temp[tid];
feats.Fill(inst);
int offset = 0;
for (size_t j = 0; j < trees.size(); ++j) {
AddStats(*trees[j], feats, gpair, info, ridx,
BeginPtr(stemp[tid]) + offset);
offset += trees[j]->param.num_nodes;
}
feats.Drop(inst);
}
}
// aggregate the statistics
int num_nodes = static_cast<int>(stemp[0].size());
#pragma omp parallel for schedule(static)
for (int nid = 0; nid < num_nodes; ++nid) {
for (int tid = 1; tid < nthread; ++tid) {
stemp[0][nid].Add(stemp[tid][nid]);
}
}
};
#if __cplusplus >= 201103L
reducer.Allreduce(BeginPtr(stemp[0]), stemp[0].size(), lazy_get_stats);
#else
reducer.Allreduce(BeginPtr(stemp[0]), stemp[0].size());
#endif
// rescale learning rate according to size of trees
float lr = param.learning_rate;
param.learning_rate = lr / trees.size();
int offset = 0;
for (size_t i = 0; i < trees.size(); ++i) {
for (int rid = 0; rid < trees[i]->param.num_roots; ++rid) {
this->Refresh(BeginPtr(stemp[0]) + offset, rid, trees[i]);
}
offset += trees[i]->param.num_nodes;
}
// set learning rate back
param.learning_rate = lr;
}
private:
inline static void AddStats(const RegTree &tree,
const RegTree::FVec &feat,
const std::vector<bst_gpair> &gpair,
const BoosterInfo &info,
const bst_uint ridx,
TStats *gstats) {
// start from groups that belongs to current data
int pid = static_cast<int>(info.GetRoot(ridx));
gstats[pid].Add(gpair, info, ridx);
// tranverse tree
while (!tree[pid].is_leaf()) {
unsigned split_index = tree[pid].split_index();
pid = tree.GetNext(pid, feat.fvalue(split_index), feat.is_missing(split_index));
gstats[pid].Add(gpair, info, ridx);
}
}
inline void Refresh(const TStats *gstats,
int nid, RegTree *p_tree) {
RegTree &tree = *p_tree;
tree.stat(nid).base_weight = static_cast<float>(gstats[nid].CalcWeight(param));
tree.stat(nid).sum_hess = static_cast<float>(gstats[nid].sum_hess);
gstats[nid].SetLeafVec(param, tree.leafvec(nid));
if (tree[nid].is_leaf()) {
tree[nid].set_leaf(tree.stat(nid).base_weight * param.learning_rate);
} else {
tree.stat(nid).loss_chg = static_cast<float>(
gstats[tree[nid].cleft()].CalcGain(param) +
gstats[tree[nid].cright()].CalcGain(param) -
gstats[nid].CalcGain(param));
this->Refresh(gstats, tree[nid].cleft(), p_tree);
this->Refresh(gstats, tree[nid].cright(), p_tree);
}
}
// training parameter
TrainParam param;
// reducer
rabit::Reducer<TStats, TStats::Reduce> reducer;
};
} // namespace tree
} // namespace xgboost
#endif // XGBOOST_TREE_UPDATER_REFRESH_INL_HPP_