xgboost/old_src/tree/updater_distcol-inl.hpp
2016-01-16 10:24:00 -08:00

176 lines
6.2 KiB
C++

/*!
* Copyright 2014 by Contributors
* \file updater_distcol-inl.hpp
* \brief beta distributed version that takes a sub-column
* and construct a tree
* \author Tianqi Chen
*/
#ifndef XGBOOST_TREE_UPDATER_DISTCOL_INL_HPP_
#define XGBOOST_TREE_UPDATER_DISTCOL_INL_HPP_
#include <vector>
#include <algorithm>
#include "../sync/sync.h"
#include "../utils/bitmap.h"
#include "../utils/io.h"
#include "./updater_colmaker-inl.hpp"
#include "./updater_prune-inl.hpp"
namespace xgboost {
namespace tree {
template<typename TStats>
class DistColMaker : public ColMaker<TStats> {
public:
DistColMaker(void) : builder(param) {}
virtual ~DistColMaker(void) {}
// set training parameter
virtual void SetParam(const char *name, const char *val) {
param.SetParam(name, val);
pruner.SetParam(name, val);
}
virtual void Update(const std::vector<bst_gpair> &gpair,
IFMatrix *p_fmat,
const BoosterInfo &info,
const std::vector<RegTree*> &trees) {
TStats::CheckInfo(info);
utils::Check(trees.size() == 1, "DistColMaker: only support one tree at a time");
// build the tree
builder.Update(gpair, p_fmat, info, trees[0]);
//// prune the tree, note that pruner will sync the tree
pruner.Update(gpair, p_fmat, info, trees);
// update position after the tree is pruned
builder.UpdatePosition(p_fmat, *trees[0]);
}
virtual const int* GetLeafPosition(void) const {
return builder.GetLeafPosition();
}
private:
struct Builder : public ColMaker<TStats>::Builder {
public:
explicit Builder(const TrainParam &param)
: ColMaker<TStats>::Builder(param) {
}
inline void UpdatePosition(IFMatrix *p_fmat, const RegTree &tree) {
const std::vector<bst_uint> &rowset = p_fmat->buffered_rowset();
const bst_omp_uint ndata = static_cast<bst_omp_uint>(rowset.size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < ndata; ++i) {
const bst_uint ridx = rowset[i];
int nid = this->DecodePosition(ridx);
while (tree[nid].is_deleted()) {
nid = tree[nid].parent();
utils::Assert(nid >=0, "distributed learning error");
}
this->position[ridx] = nid;
}
}
virtual const int* GetLeafPosition(void) const {
return BeginPtr(this->position);
}
protected:
virtual void SetNonDefaultPosition(const std::vector<int> &qexpand,
IFMatrix *p_fmat, const RegTree &tree) {
// step 2, classify the non-default data into right places
std::vector<unsigned> fsplits;
for (size_t i = 0; i < qexpand.size(); ++i) {
const int nid = qexpand[i];
if (!tree[nid].is_leaf()) {
fsplits.push_back(tree[nid].split_index());
}
}
// get the candidate split index
std::sort(fsplits.begin(), fsplits.end());
fsplits.resize(std::unique(fsplits.begin(), fsplits.end()) - fsplits.begin());
while (fsplits.size() != 0 && fsplits.back() >= p_fmat->NumCol()) {
fsplits.pop_back();
}
// bitmap is only word concurrent, set to bool first
{
bst_omp_uint ndata = static_cast<bst_omp_uint>(this->position.size());
boolmap.resize(ndata);
#pragma omp parallel for schedule(static)
for (bst_omp_uint j = 0; j < ndata; ++j) {
boolmap[j] = 0;
}
}
utils::IIterator<ColBatch> *iter = p_fmat->ColIterator(fsplits);
while (iter->Next()) {
const ColBatch &batch = iter->Value();
for (size_t i = 0; i < batch.size; ++i) {
ColBatch::Inst col = batch[i];
const bst_uint fid = batch.col_index[i];
const bst_omp_uint ndata = static_cast<bst_omp_uint>(col.length);
#pragma omp parallel for schedule(static)
for (bst_omp_uint j = 0; j < ndata; ++j) {
const bst_uint ridx = col[j].index;
const float fvalue = col[j].fvalue;
const int nid = this->DecodePosition(ridx);
if (!tree[nid].is_leaf() && tree[nid].split_index() == fid) {
if (fvalue < tree[nid].split_cond()) {
if (!tree[nid].default_left()) boolmap[ridx] = 1;
} else {
if (tree[nid].default_left()) boolmap[ridx] = 1;
}
}
}
}
}
bitmap.InitFromBool(boolmap);
// communicate bitmap
rabit::Allreduce<rabit::op::BitOR>(BeginPtr(bitmap.data), bitmap.data.size());
const std::vector<bst_uint> &rowset = p_fmat->buffered_rowset();
// get the new position
const bst_omp_uint ndata = static_cast<bst_omp_uint>(rowset.size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < ndata; ++i) {
const bst_uint ridx = rowset[i];
const int nid = this->DecodePosition(ridx);
if (bitmap.Get(ridx)) {
utils::Assert(!tree[nid].is_leaf(), "inconsistent reduce information");
if (tree[nid].default_left()) {
this->SetEncodePosition(ridx, tree[nid].cright());
} else {
this->SetEncodePosition(ridx, tree[nid].cleft());
}
}
}
}
// synchronize the best solution of each node
virtual void SyncBestSolution(const std::vector<int> &qexpand) {
std::vector<SplitEntry> vec;
for (size_t i = 0; i < qexpand.size(); ++i) {
const int nid = qexpand[i];
for (int tid = 0; tid < this->nthread; ++tid) {
this->snode[nid].best.Update(this->stemp[tid][nid].best);
}
vec.push_back(this->snode[nid].best);
}
// TODO(tqchen) lazy version
// communicate best solution
reducer.Allreduce(BeginPtr(vec), vec.size());
// assign solution back
for (size_t i = 0; i < qexpand.size(); ++i) {
const int nid = qexpand[i];
this->snode[nid].best = vec[i];
}
}
private:
utils::BitMap bitmap;
std::vector<int> boolmap;
rabit::Reducer<SplitEntry, SplitEntry::Reduce> reducer;
};
// we directly introduce pruner here
TreePruner pruner;
// training parameter
TrainParam param;
// pointer to the builder
Builder builder;
};
} // namespace tree
} // namespace xgboost
#endif // XGBOOST_TREE_UPDATER_DISTCOL_INL_HPP_