xgboost/old_src/tree/param.h
2016-01-16 10:24:00 -08:00

430 lines
15 KiB
C++

/*!
* Copyright 2014 by Contributors
* \file param.h
* \brief training parameters, statistics used to support tree construction
* \author Tianqi Chen
*/
#ifndef XGBOOST_TREE_PARAM_H_
#define XGBOOST_TREE_PARAM_H_
#include <vector>
#include <cstring>
#include "../data.h"
namespace xgboost {
namespace tree {
/*! \brief training parameters for regression tree */
struct TrainParam{
// learning step size for a time
float learning_rate;
// minimum loss change required for a split
float min_split_loss;
// maximum depth of a tree
int max_depth;
//----- the rest parameters are less important ----
// minimum amount of hessian(weight) allowed in a child
float min_child_weight;
// L2 regularization factor
float reg_lambda;
// L1 regularization factor
float reg_alpha;
// default direction choice
int default_direction;
// maximum delta update we can add in weight estimation
// this parameter can be used to stabilize update
// default=0 means no constraint on weight delta
float max_delta_step;
// whether we want to do subsample
float subsample;
// whether to subsample columns each split, in each level
float colsample_bylevel;
// whether to subsample columns during tree construction
float colsample_bytree;
// speed optimization for dense column
float opt_dense_col;
// accuracy of sketch
float sketch_eps;
// accuracy of sketch
float sketch_ratio;
// leaf vector size
int size_leaf_vector;
// option for parallelization
int parallel_option;
// option to open cacheline optimization
int cache_opt;
// number of threads to be used for tree construction,
// if OpenMP is enabled, if equals 0, use system default
int nthread;
/*! \brief constructor */
TrainParam(void) {
learning_rate = 0.3f;
min_split_loss = 0.0f;
min_child_weight = 1.0f;
max_delta_step = 0.0f;
max_depth = 6;
reg_lambda = 1.0f;
reg_alpha = 0.0f;
default_direction = 0;
subsample = 1.0f;
colsample_bytree = 1.0f;
colsample_bylevel = 1.0f;
opt_dense_col = 1.0f;
nthread = 0;
size_leaf_vector = 0;
// enforce parallel option to 0 for now, investigate the other strategy
parallel_option = 0;
sketch_eps = 0.1f;
sketch_ratio = 2.0f;
cache_opt = 1;
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name, const char *val) {
using namespace std;
// sync-names
if (!strcmp(name, "gamma")) min_split_loss = static_cast<float>(atof(val));
if (!strcmp(name, "eta")) learning_rate = static_cast<float>(atof(val));
if (!strcmp(name, "lambda")) reg_lambda = static_cast<float>(atof(val));
if (!strcmp(name, "alpha")) reg_alpha = static_cast<float>(atof(val));
if (!strcmp(name, "learning_rate")) learning_rate = static_cast<float>(atof(val));
if (!strcmp(name, "min_child_weight")) min_child_weight = static_cast<float>(atof(val));
if (!strcmp(name, "min_split_loss")) min_split_loss = static_cast<float>(atof(val));
if (!strcmp(name, "max_delta_step")) max_delta_step = static_cast<float>(atof(val));
if (!strcmp(name, "reg_lambda")) reg_lambda = static_cast<float>(atof(val));
if (!strcmp(name, "reg_alpha")) reg_alpha = static_cast<float>(atof(val));
if (!strcmp(name, "subsample")) subsample = static_cast<float>(atof(val));
if (!strcmp(name, "colsample_bylevel")) colsample_bylevel = static_cast<float>(atof(val));
if (!strcmp(name, "colsample_bytree")) colsample_bytree = static_cast<float>(atof(val));
if (!strcmp(name, "sketch_eps")) sketch_eps = static_cast<float>(atof(val));
if (!strcmp(name, "sketch_ratio")) sketch_ratio = static_cast<float>(atof(val));
if (!strcmp(name, "opt_dense_col")) opt_dense_col = static_cast<float>(atof(val));
if (!strcmp(name, "size_leaf_vector")) size_leaf_vector = atoi(val);
if (!strcmp(name, "cache_opt")) cache_opt = atoi(val);
if (!strcmp(name, "max_depth")) max_depth = atoi(val);
if (!strcmp(name, "nthread")) nthread = atoi(val);
if (!strcmp(name, "parallel_option")) parallel_option = atoi(val);
if (!strcmp(name, "default_direction")) {
if (!strcmp(val, "learn")) default_direction = 0;
if (!strcmp(val, "left")) default_direction = 1;
if (!strcmp(val, "right")) default_direction = 2;
}
}
// calculate the cost of loss function
inline double CalcGain(double sum_grad, double sum_hess) const {
if (sum_hess < min_child_weight) return 0.0;
if (max_delta_step == 0.0f) {
if (reg_alpha == 0.0f) {
return Sqr(sum_grad) / (sum_hess + reg_lambda);
} else {
return Sqr(ThresholdL1(sum_grad, reg_alpha)) / (sum_hess + reg_lambda);
}
} else {
double w = CalcWeight(sum_grad, sum_hess);
double ret = sum_grad * w + 0.5 * (sum_hess + reg_lambda) * Sqr(w);
if (reg_alpha == 0.0f) {
return - 2.0 * ret;
} else {
return - 2.0 * (ret + reg_alpha * std::abs(w));
}
}
}
// calculate cost of loss function with four statistics
inline double CalcGain(double sum_grad, double sum_hess,
double test_grad, double test_hess) const {
double w = CalcWeight(sum_grad, sum_hess);
double ret = test_grad * w + 0.5 * (test_hess + reg_lambda) * Sqr(w);
if (reg_alpha == 0.0f) {
return - 2.0 * ret;
} else {
return - 2.0 * (ret + reg_alpha * std::abs(w));
}
}
// calculate weight given the statistics
inline double CalcWeight(double sum_grad, double sum_hess) const {
if (sum_hess < min_child_weight) return 0.0;
double dw;
if (reg_alpha == 0.0f) {
dw = -sum_grad / (sum_hess + reg_lambda);
} else {
dw = -ThresholdL1(sum_grad, reg_alpha) / (sum_hess + reg_lambda);
}
if (max_delta_step != 0.0f) {
if (dw > max_delta_step) dw = max_delta_step;
if (dw < -max_delta_step) dw = -max_delta_step;
}
return dw;
}
/*! \brief whether need forward small to big search: default right */
inline bool need_forward_search(float col_density, bool indicator) const {
return this->default_direction == 2 ||
(default_direction == 0 && (col_density < opt_dense_col) && !indicator);
}
/*! \brief whether need backward big to small search: default left */
inline bool need_backward_search(float col_density, bool indicator) const {
return this->default_direction != 2;
}
/*! \brief given the loss change, whether we need to invoke pruning */
inline bool need_prune(double loss_chg, int depth) const {
return loss_chg < this->min_split_loss;
}
/*! \brief whether we can split with current hessian */
inline bool cannot_split(double sum_hess, int depth) const {
return sum_hess < this->min_child_weight * 2.0;
}
/*! \brief maximum sketch size */
inline unsigned max_sketch_size(void) const {
unsigned ret = static_cast<unsigned>(sketch_ratio / sketch_eps);
utils::Check(ret > 0, "sketch_ratio/sketch_eps must be bigger than 1");
return ret;
}
protected:
// functions for L1 cost
inline static double ThresholdL1(double w, double lambda) {
if (w > +lambda) return w - lambda;
if (w < -lambda) return w + lambda;
return 0.0;
}
inline static double Sqr(double a) {
return a * a;
}
};
/*! \brief core statistics used for tree construction */
struct GradStats {
/*! \brief sum gradient statistics */
double sum_grad;
/*! \brief sum hessian statistics */
double sum_hess;
/*!
* \brief whether this is simply statistics and we only need to call
* Add(gpair), instead of Add(gpair, info, ridx)
*/
static const int kSimpleStats = 1;
/*! \brief constructor, the object must be cleared during construction */
explicit GradStats(const TrainParam &param) {
this->Clear();
}
/*! \brief clear the statistics */
inline void Clear(void) {
sum_grad = sum_hess = 0.0f;
}
/*! \brief check if necessary information is ready */
inline static void CheckInfo(const BoosterInfo &info) {
}
/*!
* \brief accumulate statistics
* \param p the gradient pair
*/
inline void Add(bst_gpair p) {
this->Add(p.grad, p.hess);
}
/*!
* \brief accumulate statistics, more complicated version
* \param gpair the vector storing the gradient statistics
* \param info the additional information
* \param ridx instance index of this instance
*/
inline void Add(const std::vector<bst_gpair> &gpair,
const BoosterInfo &info,
bst_uint ridx) {
const bst_gpair &b = gpair[ridx];
this->Add(b.grad, b.hess);
}
/*! \brief calculate leaf weight */
inline double CalcWeight(const TrainParam &param) const {
return param.CalcWeight(sum_grad, sum_hess);
}
/*! \brief calculate gain of the solution */
inline double CalcGain(const TrainParam &param) const {
return param.CalcGain(sum_grad, sum_hess);
}
/*! \brief add statistics to the data */
inline void Add(const GradStats &b) {
this->Add(b.sum_grad, b.sum_hess);
}
/*! \brief same as add, reduce is used in All Reduce */
inline static void Reduce(GradStats &a, const GradStats &b) { // NOLINT(*)
a.Add(b);
}
/*! \brief set current value to a - b */
inline void SetSubstract(const GradStats &a, const GradStats &b) {
sum_grad = a.sum_grad - b.sum_grad;
sum_hess = a.sum_hess - b.sum_hess;
}
/*! \return whether the statistics is not used yet */
inline bool Empty(void) const {
return sum_hess == 0.0;
}
/*! \brief set leaf vector value based on statistics */
inline void SetLeafVec(const TrainParam &param, bst_float *vec) const {
}
// constructor to allow inheritance
GradStats(void) {}
/*! \brief add statistics to the data */
inline void Add(double grad, double hess) {
sum_grad += grad; sum_hess += hess;
}
};
/*! \brief vectorized cv statistics */
template<unsigned vsize>
struct CVGradStats : public GradStats {
// additional statistics
GradStats train[vsize], valid[vsize];
// constructor
explicit CVGradStats(const TrainParam &param) {
utils::Check(param.size_leaf_vector == vsize,
"CVGradStats: vsize must match size_leaf_vector");
this->Clear();
}
/*! \brief check if necessary information is ready */
inline static void CheckInfo(const BoosterInfo &info) {
utils::Check(info.fold_index.size() != 0,
"CVGradStats: require fold_index");
}
/*! \brief clear the statistics */
inline void Clear(void) {
GradStats::Clear();
for (unsigned i = 0; i < vsize; ++i) {
train[i].Clear(); valid[i].Clear();
}
}
inline void Add(const std::vector<bst_gpair> &gpair,
const BoosterInfo &info,
bst_uint ridx) {
GradStats::Add(gpair[ridx].grad, gpair[ridx].hess);
const size_t step = info.fold_index.size();
for (unsigned i = 0; i < vsize; ++i) {
const bst_gpair &b = gpair[(i + 1) * step + ridx];
if (info.fold_index[ridx] == i) {
valid[i].Add(b.grad, b.hess);
} else {
train[i].Add(b.grad, b.hess);
}
}
}
/*! \brief calculate gain of the solution */
inline double CalcGain(const TrainParam &param) const {
double ret = 0.0;
for (unsigned i = 0; i < vsize; ++i) {
ret += param.CalcGain(train[i].sum_grad,
train[i].sum_hess,
vsize * valid[i].sum_grad,
vsize * valid[i].sum_hess);
}
return ret / vsize;
}
/*! \brief add statistics to the data */
inline void Add(const CVGradStats &b) {
GradStats::Add(b);
for (unsigned i = 0; i < vsize; ++i) {
train[i].Add(b.train[i]);
valid[i].Add(b.valid[i]);
}
}
/*! \brief same as add, reduce is used in All Reduce */
inline static void Reduce(CVGradStats &a, const CVGradStats &b) { // NOLINT(*)
a.Add(b);
}
/*! \brief set current value to a - b */
inline void SetSubstract(const CVGradStats &a, const CVGradStats &b) {
GradStats::SetSubstract(a, b);
for (int i = 0; i < vsize; ++i) {
train[i].SetSubstract(a.train[i], b.train[i]);
valid[i].SetSubstract(a.valid[i], b.valid[i]);
}
}
/*! \brief set leaf vector value based on statistics */
inline void SetLeafVec(const TrainParam &param, bst_float *vec) const{
for (int i = 0; i < vsize; ++i) {
vec[i] = param.learning_rate *
param.CalcWeight(train[i].sum_grad, train[i].sum_hess);
}
}
};
/*!
* \brief statistics that is helpful to store
* and represent a split solution for the tree
*/
struct SplitEntry{
/*! \brief loss change after split this node */
bst_float loss_chg;
/*! \brief split index */
unsigned sindex;
/*! \brief split value */
float split_value;
/*! \brief constructor */
SplitEntry(void) : loss_chg(0.0f), sindex(0), split_value(0.0f) {}
/*!
* \brief decides whether we can replace current entry with the given statistics
* This function gives better priority to lower index when loss_chg == new_loss_chg.
* Not the best way, but helps to give consistent result during multi-thread execution.
* \param new_loss_chg the loss reduction get through the split
* \param split_index the feature index where the split is on
*/
inline bool NeedReplace(bst_float new_loss_chg, unsigned split_index) const {
if (this->split_index() <= split_index) {
return new_loss_chg > this->loss_chg;
} else {
return !(this->loss_chg > new_loss_chg);
}
}
/*!
* \brief update the split entry, replace it if e is better
* \param e candidate split solution
* \return whether the proposed split is better and can replace current split
*/
inline bool Update(const SplitEntry &e) {
if (this->NeedReplace(e.loss_chg, e.split_index())) {
this->loss_chg = e.loss_chg;
this->sindex = e.sindex;
this->split_value = e.split_value;
return true;
} else {
return false;
}
}
/*!
* \brief update the split entry, replace it if e is better
* \param new_loss_chg loss reduction of new candidate
* \param split_index feature index to split on
* \param new_split_value the split point
* \param default_left whether the missing value goes to left
* \return whether the proposed split is better and can replace current split
*/
inline bool Update(bst_float new_loss_chg, unsigned split_index,
float new_split_value, bool default_left) {
if (this->NeedReplace(new_loss_chg, split_index)) {
this->loss_chg = new_loss_chg;
if (default_left) split_index |= (1U << 31);
this->sindex = split_index;
this->split_value = new_split_value;
return true;
} else {
return false;
}
}
/*! \brief same as update, used by AllReduce*/
inline static void Reduce(SplitEntry &dst, const SplitEntry &src) { // NOLINT(*)
dst.Update(src);
}
/*!\return feature index to split on */
inline unsigned split_index(void) const {
return sindex & ((1U << 31) - 1U);
}
/*!\return whether missing value goes to left branch */
inline bool default_left(void) const {
return (sindex >> 31) != 0;
}
};
} // namespace tree
} // namespace xgboost
#endif // XGBOOST_TREE_PARAM_H_