xgboost/old_src/learner/objective.h
2016-01-16 10:24:00 -08:00

90 lines
3.4 KiB
C++

/*!
* Copyright 2014 by Contributors
* \file objective.h
* \brief interface of objective function used for gradient boosting
* \author Tianqi Chen, Kailong Chen
*/
#ifndef XGBOOST_LEARNER_OBJECTIVE_H_
#define XGBOOST_LEARNER_OBJECTIVE_H_
#include <vector>
#include "./dmatrix.h"
namespace xgboost {
namespace learner {
/*! \brief interface of objective function */
class IObjFunction{
public:
/*! \brief virtual destructor */
virtual ~IObjFunction(void) {}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
virtual void SetParam(const char *name, const char *val) = 0;
/*!
* \brief get gradient over each of predictions, given existing information
* \param preds prediction of current round
* \param info information about labels, weights, groups in rank
* \param iter current iteration number
* \param out_gpair output of get gradient, saves gradient and second order gradient in
*/
virtual void GetGradient(const std::vector<float> &preds,
const MetaInfo &info,
int iter,
std::vector<bst_gpair> *out_gpair) = 0;
/*! \return the default evaluation metric for the objective */
virtual const char* DefaultEvalMetric(void) const = 0;
// the following functions are optional, most of time default implementation is good enough
/*!
* \brief transform prediction values, this is only called when Prediction is called
* \param io_preds prediction values, saves to this vector as well
*/
virtual void PredTransform(std::vector<float> *io_preds) {}
/*!
* \brief transform prediction values, this is only called when Eval is called,
* usually it redirect to PredTransform
* \param io_preds prediction values, saves to this vector as well
*/
virtual void EvalTransform(std::vector<float> *io_preds) {
this->PredTransform(io_preds);
}
/*!
* \brief transform probability value back to margin
* this is used to transform user-set base_score back to margin
* used by gradient boosting
* \return transformed value
*/
virtual float ProbToMargin(float base_score) const {
return base_score;
}
};
} // namespace learner
} // namespace xgboost
// this are implementations of objective functions
#include "objective-inl.hpp"
// factory function
namespace xgboost {
namespace learner {
/*! \brief factory function to create objective function by name */
inline IObjFunction* CreateObjFunction(const char *name) {
using namespace std;
if (!strcmp("reg:linear", name)) return new RegLossObj(LossType::kLinearSquare);
if (!strcmp("reg:logistic", name)) return new RegLossObj(LossType::kLogisticNeglik);
if (!strcmp("binary:logistic", name)) return new RegLossObj(LossType::kLogisticClassify);
if (!strcmp("binary:logitraw", name)) return new RegLossObj(LossType::kLogisticRaw);
if (!strcmp("count:poisson", name)) return new PoissonRegression();
if (!strcmp("multi:softmax", name)) return new SoftmaxMultiClassObj(0);
if (!strcmp("multi:softprob", name)) return new SoftmaxMultiClassObj(1);
if (!strcmp("rank:pairwise", name )) return new PairwiseRankObj();
if (!strcmp("rank:ndcg", name)) return new LambdaRankObjNDCG();
if (!strcmp("rank:map", name)) return new LambdaRankObjMAP();
utils::Error("unknown objective function type: %s", name);
return NULL;
}
} // namespace learner
} // namespace xgboost
#endif // XGBOOST_LEARNER_OBJECTIVE_H_