xgboost/plugin/sycl/objective/regression_obj.cc
Dmitry Razdoburdin 0c44067736
[SYCL] Optimize gradients calculations. (#10325)
---------

Co-authored-by: Dmitry Razdoburdin <>
2024-06-08 11:53:23 +08:00

224 lines
7.5 KiB
C++

/*!
* Copyright 2015-2023 by Contributors
* \file regression_obj.cc
* \brief Definition of regression objectives.
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#pragma GCC diagnostic ignored "-W#pragma-messages"
#include <xgboost/logging.h>
#include <xgboost/objective.h>
#pragma GCC diagnostic pop
#include <cmath>
#include <memory>
#include <vector>
#include "xgboost/host_device_vector.h"
#include "xgboost/json.h"
#include "xgboost/parameter.h"
#include "xgboost/span.h"
#include "../../src/common/transform.h"
#include "../../src/common/common.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#include "../../../src/objective/regression_loss.h"
#pragma GCC diagnostic pop
#include "../../../src/objective/regression_param.h"
#include "../common/linalg_op.h"
#include "../device_manager.h"
#include "../data.h"
#include <CL/sycl.hpp>
namespace xgboost {
namespace sycl {
namespace obj {
DMLC_REGISTRY_FILE_TAG(regression_obj_sycl);
template<typename Loss>
class RegLossObj : public ObjFunction {
protected:
HostDeviceVector<int> label_correct_;
mutable bool are_buffs_init = false;
void InitBuffers() const {
if (!are_buffs_init) {
batch_processor_.InitBuffers(&qu_, {1, 1, 1, 1});
are_buffs_init = true;
}
}
public:
RegLossObj() = default;
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.UpdateAllowUnknown(args);
qu_ = device_manager.GetQueue(ctx_->Device());
}
void GetGradient(const HostDeviceVector<bst_float>& preds,
const MetaInfo &info,
int iter,
xgboost::linalg::Matrix<GradientPair>* out_gpair) override {
if (info.labels.Size() == 0) return;
CHECK_EQ(preds.Size(), info.labels.Size())
<< " " << "labels are not correctly provided"
<< "preds.size=" << preds.Size() << ", label.size=" << info.labels.Size() << ", "
<< "Loss: " << Loss::Name();
size_t const ndata = preds.Size();
auto const n_targets = this->Targets(info);
out_gpair->Reshape(info.num_row_, n_targets);
// TODO(razdoburdin): add label_correct check
label_correct_.Resize(1);
label_correct_.Fill(1);
bool is_null_weight = info.weights_.Size() == 0;
auto scale_pos_weight = param_.scale_pos_weight;
if (!is_null_weight) {
CHECK_EQ(info.weights_.Size(), info.labels.Shape(0))
<< "Number of weights should be equal to number of data points.";
}
int flag = 1;
auto objective_fn = [=, &flag]
(const std::vector<::sycl::event>& events,
size_t ndata,
GradientPair* out_gpair,
const bst_float* preds,
const bst_float* labels,
const bst_float* weights) {
const size_t wg_size = 32;
const size_t nwgs = ndata / wg_size + (ndata % wg_size > 0);
return linalg::GroupWiseKernel(&qu_, &flag, events, {nwgs, wg_size},
[=] (size_t idx, auto flag) {
const bst_float pred = Loss::PredTransform(preds[idx]);
bst_float weight = is_null_weight ? 1.0f : weights[idx/n_targets];
const bst_float label = labels[idx];
if (label == 1.0f) {
weight *= scale_pos_weight;
}
if (!Loss::CheckLabel(label)) {
AtomicRef<int> flag_ref(flag[0]);
flag_ref = 0;
}
out_gpair[idx] = GradientPair(Loss::FirstOrderGradient(pred, label) * weight,
Loss::SecondOrderGradient(pred, label) * weight);
});
};
InitBuffers();
if (is_null_weight) {
// Output is passed by pointer
// Inputs are passed by const reference
batch_processor_.Calculate(std::move(objective_fn),
out_gpair->Data(),
preds,
*(info.labels.Data()));
} else {
batch_processor_.Calculate(std::move(objective_fn),
out_gpair->Data(),
preds,
*(info.labels.Data()),
info.weights_);
}
qu_.wait_and_throw();
if (flag == 0) {
LOG(FATAL) << Loss::LabelErrorMsg();
}
}
public:
const char* DefaultEvalMetric() const override {
return Loss::DefaultEvalMetric();
}
void PredTransform(HostDeviceVector<bst_float> *io_preds) const override {
size_t const ndata = io_preds->Size();
if (ndata == 0) return;
InitBuffers();
batch_processor_.Calculate([=] (const std::vector<::sycl::event>& events,
size_t ndata,
bst_float* io_preds) {
return qu_.submit([&](::sycl::handler& cgh) {
cgh.depends_on(events);
cgh.parallel_for<>(::sycl::range<1>(ndata), [=](::sycl::id<1> pid) {
int idx = pid[0];
io_preds[idx] = Loss::PredTransform(io_preds[idx]);
});
});
}, io_preds);
qu_.wait_and_throw();
}
float ProbToMargin(float base_score) const override {
return Loss::ProbToMargin(base_score);
}
struct ObjInfo Task() const override {
return Loss::Info();
};
uint32_t Targets(MetaInfo const& info) const override {
// Multi-target regression.
return std::max(static_cast<size_t>(1), info.labels.Shape(1));
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String(Loss::Name());
out["reg_loss_param"] = ToJson(param_);
}
void LoadConfig(Json const& in) override {
FromJson(in["reg_loss_param"], &param_);
}
protected:
xgboost::obj::RegLossParam param_;
sycl::DeviceManager device_manager;
mutable ::sycl::queue qu_;
static constexpr size_t kBatchSize = 1u << 22;
mutable linalg::BatchProcessingHelper<GradientPair, bst_float, kBatchSize, 3> batch_processor_;
};
XGBOOST_REGISTER_OBJECTIVE(SquaredLossRegression,
std::string(xgboost::obj::LinearSquareLoss::Name()) + "_sycl")
.describe("Regression with squared error with SYCL backend.")
.set_body([]() { return new RegLossObj<xgboost::obj::LinearSquareLoss>(); });
XGBOOST_REGISTER_OBJECTIVE(SquareLogError,
std::string(xgboost::obj::SquaredLogError::Name()) + "_sycl")
.describe("Regression with root mean squared logarithmic error with SYCL backend.")
.set_body([]() { return new RegLossObj<xgboost::obj::SquaredLogError>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticRegression,
std::string(xgboost::obj::LogisticRegression::Name()) + "_sycl")
.describe("Logistic regression for probability regression task with SYCL backend.")
.set_body([]() { return new RegLossObj<xgboost::obj::LogisticRegression>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticClassification,
std::string(xgboost::obj::LogisticClassification::Name()) + "_sycl")
.describe("Logistic regression for binary classification task with SYCL backend.")
.set_body([]() { return new RegLossObj<xgboost::obj::LogisticClassification>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticRaw,
std::string(xgboost::obj::LogisticRaw::Name()) + "_sycl")
.describe("Logistic regression for classification, output score "
"before logistic transformation with SYCL backend.")
.set_body([]() { return new RegLossObj<xgboost::obj::LogisticRaw>(); });
} // namespace obj
} // namespace sycl
} // namespace xgboost