xgboost/src/objective/aft_obj.cc
Jiaming Yuan d3a0efbf16
Reorder includes. (#5749)
* Reorder includes.

* R.
2020-06-03 17:30:47 +12:00

117 lines
3.7 KiB
C++

/*!
* Copyright 2015 by Contributors
* \file rank.cc
* \brief Definition of aft loss.
*/
#include <vector>
#include <limits>
#include <algorithm>
#include <memory>
#include <utility>
#include <cmath>
#include <dmlc/omp.h>
#include <xgboost/logging.h>
#include <xgboost/objective.h>
#include "xgboost/json.h"
#include "../common/math.h"
#include "../common/random.h"
#include "../common/survival_util.h"
using AFTParam = xgboost::common::AFTParam;
using AFTLoss = xgboost::common::AFTLoss;
namespace xgboost {
namespace obj {
DMLC_REGISTRY_FILE_TAG(aft_obj);
class AFTObj : public ObjFunction {
public:
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.UpdateAllowUnknown(args);
loss_.reset(new AFTLoss(param_.aft_loss_distribution));
}
void GetGradient(const HostDeviceVector<bst_float>& preds,
const MetaInfo& info,
int iter,
HostDeviceVector<GradientPair>* out_gpair) override {
/* Boilerplate */
CHECK_EQ(preds.Size(), info.labels_lower_bound_.Size());
CHECK_EQ(preds.Size(), info.labels_upper_bound_.Size());
const auto& yhat = preds.HostVector();
const auto& y_lower = info.labels_lower_bound_.HostVector();
const auto& y_upper = info.labels_upper_bound_.HostVector();
const auto& weights = info.weights_.HostVector();
const bool is_null_weight = weights.empty();
out_gpair->Resize(yhat.size());
std::vector<GradientPair>& gpair = out_gpair->HostVector();
CHECK_LE(yhat.size(), static_cast<size_t>(std::numeric_limits<omp_ulong>::max()))
<< "yhat is too big";
const omp_ulong nsize = static_cast<omp_ulong>(yhat.size());
const float aft_loss_distribution_scale = param_.aft_loss_distribution_scale;
#pragma omp parallel for \
shared(weights, y_lower, y_upper, yhat, gpair)
for (omp_ulong i = 0; i < nsize; ++i) {
// If weights are empty, data is unweighted so we use 1.0 everywhere
const double w = is_null_weight ? 1.0 : weights[i];
const double grad = loss_->Gradient(y_lower[i], y_upper[i],
yhat[i], aft_loss_distribution_scale);
const double hess = loss_->Hessian(y_lower[i], y_upper[i],
yhat[i], aft_loss_distribution_scale);
gpair[i] = GradientPair(grad * w, hess * w);
}
}
void PredTransform(HostDeviceVector<bst_float> *io_preds) override {
// Trees give us a prediction in log scale, so exponentiate
std::vector<bst_float> &preds = io_preds->HostVector();
const long ndata = static_cast<long>(preds.size()); // NOLINT(*)
#pragma omp parallel for shared(preds)
for (long j = 0; j < ndata; ++j) { // NOLINT(*)
preds[j] = std::exp(preds[j]);
}
}
void EvalTransform(HostDeviceVector<bst_float> *io_preds) override {
// do nothing here, since the AFT metric expects untransformed prediction score
}
bst_float ProbToMargin(bst_float base_score) const override {
return std::log(base_score);
}
const char* DefaultEvalMetric() const override {
return "aft-nloglik";
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String("survival:aft");
out["aft_loss_param"] = ToJson(param_);
}
void LoadConfig(Json const& in) override {
FromJson(in["aft_loss_param"], &param_);
loss_.reset(new AFTLoss(param_.aft_loss_distribution));
}
private:
AFTParam param_;
std::unique_ptr<AFTLoss> loss_;
};
// register the objective functions
XGBOOST_REGISTER_OBJECTIVE(AFTObj, "survival:aft")
.describe("AFT loss function")
.set_body([]() { return new AFTObj(); });
} // namespace obj
} // namespace xgboost