xgboost/tests/cpp/objective/test_ranking_obj.cc
Jiaming Yuan f0064c07ab
Refactor configuration [Part II]. (#4577)
* Refactor configuration [Part II].

* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
   parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.

* Learner changes:
** Make `LearnerImpl` the only source of configuration.

    All configurations are stored and carried out by `LearnerImpl::Configure()`.

** Remove booster in C API.

    Originally kept for "compatibility reason", but did not state why.  So here
    we just remove it.

** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`.  Configuration will always be lazy.
** Run `Configure` before every iteration.

* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.

    `GBTree` is now used to dispatch the predictor.

** Remove some GPU Predictor tests.

* IO

No IO changes.  The binary model format stability is tested by comparing
hashing value of save models between two commits
2019-07-20 08:34:56 -04:00

35 lines
1.0 KiB
C++

// Copyright by Contributors
#include <xgboost/objective.h>
#include <xgboost/generic_parameters.h>
#include "../helpers.h"
TEST(Objective, PairwiseRankingGPair) {
xgboost::GenericParameter tparam;
std::vector<std::pair<std::string, std::string>> args;
tparam.InitAllowUnknown(args);
xgboost::ObjFunction * obj =
xgboost::ObjFunction::Create("rank:pairwise", &tparam);
obj->Configure(args);
// Test with setting sample weight to second query group
CheckRankingObjFunction(obj,
{0, 0.1f, 0, 0.1f},
{0, 1, 0, 1},
{2.0f, 0.0f},
{0, 2, 4},
{1.9f, -1.9f, 0.0f, 0.0f},
{1.995f, 1.995f, 0.0f, 0.0f});
CheckRankingObjFunction(obj,
{0, 0.1f, 0, 0.1f},
{0, 1, 0, 1},
{1.0f, 1.0f},
{0, 2, 4},
{0.95f, -0.95f, 0.95f, -0.95f},
{0.9975f, 0.9975f, 0.9975f, 0.9975f});
ASSERT_NO_THROW(obj->DefaultEvalMetric());
delete obj;
}