xgboost/demo/dask/cpu_training.py
2019-09-25 01:30:14 -04:00

36 lines
1009 B
Python

import xgboost as xgb
from xgboost.dask import DaskDMatrix
from dask.distributed import Client
from dask.distributed import LocalCluster
from dask import array as da
def main(client):
n = 100
m = 100000
partition_size = 1000
X = da.random.random((m, n), partition_size)
y = da.random.random(m, partition_size)
dtrain = DaskDMatrix(client, X, y)
output = xgb.dask.train(client,
{'verbosity': 2,
'nthread': 1,
'tree_method': 'hist'},
dtrain,
num_boost_round=4, evals=[(dtrain, 'train')])
bst = output['booster']
history = output['history']
prediction = xgb.dask.predict(client, bst, dtrain)
print('Evaluation history:', history)
return prediction
if __name__ == '__main__':
# or use any other clusters
cluster = LocalCluster(n_workers=4, threads_per_worker=1)
client = Client(cluster)
main(client)