177 lines
5.2 KiB
Python
177 lines
5.2 KiB
Python
# coding: utf-8
|
|
# pylint: disable= invalid-name, unused-import
|
|
"""For compatibility and optional dependencies."""
|
|
from typing import Any
|
|
import sys
|
|
import types
|
|
import importlib.util
|
|
import logging
|
|
import numpy as np
|
|
|
|
assert (sys.version_info[0] == 3), 'Python 2 is no longer supported.'
|
|
|
|
# pylint: disable=invalid-name, redefined-builtin
|
|
STRING_TYPES = (str,)
|
|
|
|
|
|
def py_str(x):
|
|
"""convert c string back to python string"""
|
|
return x.decode('utf-8')
|
|
|
|
|
|
def lazy_isinstance(instance, module, name):
|
|
'''Use string representation to identify a type.'''
|
|
module = type(instance).__module__ == module
|
|
name = type(instance).__name__ == name
|
|
return module and name
|
|
|
|
|
|
# pandas
|
|
try:
|
|
from pandas import DataFrame, Series
|
|
from pandas import MultiIndex, Int64Index
|
|
from pandas import concat as pandas_concat
|
|
|
|
PANDAS_INSTALLED = True
|
|
except ImportError:
|
|
|
|
MultiIndex = object
|
|
Int64Index = object
|
|
DataFrame: Any = object
|
|
Series = object
|
|
pandas_concat = None
|
|
PANDAS_INSTALLED = False
|
|
|
|
# sklearn
|
|
try:
|
|
from sklearn.base import BaseEstimator
|
|
from sklearn.base import RegressorMixin, ClassifierMixin
|
|
from sklearn.preprocessing import LabelEncoder
|
|
|
|
try:
|
|
from sklearn.model_selection import KFold, StratifiedKFold
|
|
except ImportError:
|
|
from sklearn.cross_validation import KFold, StratifiedKFold
|
|
|
|
SKLEARN_INSTALLED = True
|
|
|
|
XGBModelBase = BaseEstimator
|
|
XGBRegressorBase = RegressorMixin
|
|
XGBClassifierBase = ClassifierMixin
|
|
|
|
XGBKFold = KFold
|
|
XGBStratifiedKFold = StratifiedKFold
|
|
|
|
class XGBoostLabelEncoder(LabelEncoder):
|
|
'''Label encoder with JSON serialization methods.'''
|
|
def to_json(self):
|
|
'''Returns a JSON compatible dictionary'''
|
|
meta = dict()
|
|
for k, v in self.__dict__.items():
|
|
if isinstance(v, np.ndarray):
|
|
meta[k] = v.tolist()
|
|
else:
|
|
meta[k] = v
|
|
return meta
|
|
|
|
def from_json(self, doc):
|
|
# pylint: disable=attribute-defined-outside-init
|
|
'''Load the encoder back from a JSON compatible dict.'''
|
|
meta = dict()
|
|
for k, v in doc.items():
|
|
if k == 'classes_':
|
|
self.classes_ = np.array(v)
|
|
continue
|
|
meta[k] = v
|
|
self.__dict__.update(meta)
|
|
except ImportError:
|
|
SKLEARN_INSTALLED = False
|
|
|
|
# used for compatibility without sklearn
|
|
XGBModelBase = object
|
|
XGBClassifierBase = object
|
|
XGBRegressorBase = object
|
|
|
|
XGBKFold = None
|
|
XGBStratifiedKFold = None
|
|
XGBoostLabelEncoder = None
|
|
|
|
|
|
# dask
|
|
try:
|
|
import pkg_resources
|
|
pkg_resources.get_distribution('dask')
|
|
DASK_INSTALLED = True
|
|
except pkg_resources.DistributionNotFound:
|
|
dask = None
|
|
DASK_INSTALLED = False
|
|
|
|
|
|
try:
|
|
import sparse
|
|
import scipy.sparse as scipy_sparse
|
|
from scipy.sparse import csr_matrix as scipy_csr
|
|
SCIPY_INSTALLED = True
|
|
except ImportError:
|
|
sparse = False
|
|
scipy_sparse = False
|
|
scipy_csr: Any = object
|
|
SCIPY_INSTALLED = False
|
|
|
|
|
|
# Modified from tensorflow with added caching. There's a `LazyLoader` in
|
|
# `importlib.utils`, except it's unclear from its document on how to use it. This one
|
|
# seems to be easy to understand and works out of box.
|
|
|
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
|
|
# file except in compliance with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software distributed under
|
|
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the specific language governing
|
|
# permissions and limitations under the License.
|
|
class LazyLoader(types.ModuleType):
|
|
"""Lazily import a module, mainly to avoid pulling in large dependencies.
|
|
"""
|
|
|
|
def __init__(self, local_name, parent_module_globals, name, warning=None):
|
|
self._local_name = local_name
|
|
self._parent_module_globals = parent_module_globals
|
|
self._warning = warning
|
|
self.module = None
|
|
|
|
super().__init__(name)
|
|
|
|
def _load(self):
|
|
"""Load the module and insert it into the parent's globals."""
|
|
# Import the target module and insert it into the parent's namespace
|
|
module = importlib.import_module(self.__name__)
|
|
self._parent_module_globals[self._local_name] = module
|
|
|
|
# Emit a warning if one was specified
|
|
if self._warning:
|
|
logging.warning(self._warning)
|
|
# Make sure to only warn once.
|
|
self._warning = None
|
|
|
|
# Update this object's dict so that if someone keeps a reference to the
|
|
# LazyLoader, lookups are efficient (__getattr__ is only called on lookups
|
|
# that fail).
|
|
self.__dict__.update(module.__dict__)
|
|
|
|
return module
|
|
|
|
def __getattr__(self, item):
|
|
if not self.module:
|
|
self.module = self._load()
|
|
return getattr(self.module, item)
|
|
|
|
def __dir__(self):
|
|
if not self.module:
|
|
self.module = self._load()
|
|
return dir(self.module)
|