* Clang-tidy static analysis * Modernise checks * Google coding standard checks * Identifier renaming according to Google style
244 lines
8.4 KiB
C++
244 lines
8.4 KiB
C++
/*!
|
|
* Copyright 2017 by Contributors
|
|
* \file column_matrix.h
|
|
* \brief Utility for fast column-wise access
|
|
* \author Philip Cho
|
|
*/
|
|
|
|
#ifndef XGBOOST_COMMON_COLUMN_MATRIX_H_
|
|
#define XGBOOST_COMMON_COLUMN_MATRIX_H_
|
|
|
|
#define XGBOOST_TYPE_SWITCH(dtype, OP) \
|
|
\
|
|
switch(dtype) { \
|
|
case xgboost::common::uint32: { \
|
|
using DType = uint32_t; \
|
|
OP; \
|
|
break; \
|
|
} \
|
|
case xgboost::common::uint16: { \
|
|
using DType = uint16_t; \
|
|
OP; \
|
|
break; \
|
|
} \
|
|
case xgboost::common::uint8: { \
|
|
using DType = uint8_t; \
|
|
OP; \
|
|
break; \
|
|
default: \
|
|
LOG(FATAL) << "don't recognize type flag" << dtype; \
|
|
} \
|
|
\
|
|
}
|
|
|
|
#include <type_traits>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include "hist_util.h"
|
|
#include "../tree/fast_hist_param.h"
|
|
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
|
|
using tree::FastHistParam;
|
|
|
|
/*! \brief indicator of data type used for storing bin id's in a column. */
|
|
enum DataType {
|
|
uint8 = 1,
|
|
uint16 = 2,
|
|
uint32 = 4
|
|
};
|
|
|
|
/*! \brief column type */
|
|
enum ColumnType {
|
|
kDenseColumn,
|
|
kSparseColumn
|
|
};
|
|
|
|
/*! \brief a column storage, to be used with ApplySplit. Note that each
|
|
bin id is stored as index[i] + index_base. */
|
|
template<typename T>
|
|
class Column {
|
|
public:
|
|
ColumnType type;
|
|
const T* index;
|
|
uint32_t index_base;
|
|
const size_t* row_ind;
|
|
size_t len;
|
|
};
|
|
|
|
/*! \brief a collection of columns, with support for construction from
|
|
GHistIndexMatrix. */
|
|
class ColumnMatrix {
|
|
public:
|
|
// get number of features
|
|
inline bst_uint GetNumFeature() const {
|
|
return static_cast<bst_uint>(type_.size());
|
|
}
|
|
|
|
// construct column matrix from GHistIndexMatrix
|
|
inline void Init(const GHistIndexMatrix& gmat,
|
|
const FastHistParam& param) {
|
|
this->dtype = static_cast<DataType>(param.colmat_dtype);
|
|
/* if dtype is smaller than uint32_t, multiple bin_id's will be stored in each
|
|
slot of internal buffer. */
|
|
packing_factor_ = sizeof(uint32_t) / static_cast<size_t>(this->dtype);
|
|
|
|
const auto nfeature = static_cast<bst_uint>(gmat.cut->row_ptr.size() - 1);
|
|
const size_t nrow = gmat.row_ptr.size() - 1;
|
|
|
|
// identify type of each column
|
|
feature_counts_.resize(nfeature);
|
|
type_.resize(nfeature);
|
|
std::fill(feature_counts_.begin(), feature_counts_.end(), 0);
|
|
|
|
uint32_t max_val = 0;
|
|
XGBOOST_TYPE_SWITCH(this->dtype, {
|
|
max_val = static_cast<uint32_t>(std::numeric_limits<DType>::max());
|
|
});
|
|
for (bst_uint fid = 0; fid < nfeature; ++fid) {
|
|
CHECK_LE(gmat.cut->row_ptr[fid + 1] - gmat.cut->row_ptr[fid], max_val);
|
|
}
|
|
|
|
gmat.GetFeatureCounts(&feature_counts_[0]);
|
|
// classify features
|
|
for (bst_uint fid = 0; fid < nfeature; ++fid) {
|
|
if (static_cast<double>(feature_counts_[fid])
|
|
< param.sparse_threshold * nrow) {
|
|
type_[fid] = kSparseColumn;
|
|
} else {
|
|
type_[fid] = kDenseColumn;
|
|
}
|
|
}
|
|
|
|
// want to compute storage boundary for each feature
|
|
// using variants of prefix sum scan
|
|
boundary_.resize(nfeature);
|
|
size_t accum_index_ = 0;
|
|
size_t accum_row_ind_ = 0;
|
|
for (bst_uint fid = 0; fid < nfeature; ++fid) {
|
|
boundary_[fid].index_begin = accum_index_;
|
|
boundary_[fid].row_ind_begin = accum_row_ind_;
|
|
if (type_[fid] == kDenseColumn) {
|
|
accum_index_ += static_cast<size_t>(nrow);
|
|
} else {
|
|
accum_index_ += feature_counts_[fid];
|
|
accum_row_ind_ += feature_counts_[fid];
|
|
}
|
|
boundary_[fid].index_end = accum_index_;
|
|
boundary_[fid].row_ind_end = accum_row_ind_;
|
|
}
|
|
|
|
index_.resize((boundary_[nfeature - 1].index_end
|
|
+ (packing_factor_ - 1)) / packing_factor_);
|
|
row_ind_.resize(boundary_[nfeature - 1].row_ind_end);
|
|
|
|
// store least bin id for each feature
|
|
index_base_.resize(nfeature);
|
|
for (bst_uint fid = 0; fid < nfeature; ++fid) {
|
|
index_base_[fid] = gmat.cut->row_ptr[fid];
|
|
}
|
|
|
|
// pre-fill index_ for dense columns
|
|
for (bst_uint fid = 0; fid < nfeature; ++fid) {
|
|
if (type_[fid] == kDenseColumn) {
|
|
const size_t ibegin = boundary_[fid].index_begin;
|
|
XGBOOST_TYPE_SWITCH(this->dtype, {
|
|
const size_t block_offset = ibegin / packing_factor_;
|
|
const size_t elem_offset = ibegin % packing_factor_;
|
|
DType* begin = reinterpret_cast<DType*>(&index_[block_offset]) + elem_offset;
|
|
DType* end = begin + nrow;
|
|
std::fill(begin, end, std::numeric_limits<DType>::max());
|
|
// max() indicates missing values
|
|
});
|
|
}
|
|
}
|
|
|
|
// loop over all rows and fill column entries
|
|
// num_nonzeros[fid] = how many nonzeros have this feature accumulated so far?
|
|
std::vector<size_t> num_nonzeros;
|
|
num_nonzeros.resize(nfeature);
|
|
std::fill(num_nonzeros.begin(), num_nonzeros.end(), 0);
|
|
for (size_t rid = 0; rid < nrow; ++rid) {
|
|
const size_t ibegin = gmat.row_ptr[rid];
|
|
const size_t iend = gmat.row_ptr[rid + 1];
|
|
size_t fid = 0;
|
|
for (size_t i = ibegin; i < iend; ++i) {
|
|
const uint32_t bin_id = gmat.index[i];
|
|
while (bin_id >= gmat.cut->row_ptr[fid + 1]) {
|
|
++fid;
|
|
}
|
|
if (type_[fid] == kDenseColumn) {
|
|
XGBOOST_TYPE_SWITCH(this->dtype, {
|
|
const size_t block_offset = boundary_[fid].index_begin / packing_factor_;
|
|
const size_t elem_offset = boundary_[fid].index_begin % packing_factor_;
|
|
DType* begin = reinterpret_cast<DType*>(&index_[block_offset]) + elem_offset;
|
|
begin[rid] = static_cast<DType>(bin_id - index_base_[fid]);
|
|
});
|
|
} else {
|
|
XGBOOST_TYPE_SWITCH(this->dtype, {
|
|
const size_t block_offset = boundary_[fid].index_begin / packing_factor_;
|
|
const size_t elem_offset = boundary_[fid].index_begin % packing_factor_;
|
|
DType* begin = reinterpret_cast<DType*>(&index_[block_offset]) + elem_offset;
|
|
begin[num_nonzeros[fid]] = static_cast<DType>(bin_id - index_base_[fid]);
|
|
});
|
|
row_ind_[boundary_[fid].row_ind_begin + num_nonzeros[fid]] = rid;
|
|
++num_nonzeros[fid];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Fetch an individual column. This code should be used with XGBOOST_TYPE_SWITCH
|
|
to determine type of bin id's */
|
|
template<typename T>
|
|
inline Column<T> GetColumn(unsigned fid) const {
|
|
const bool valid_type = std::is_same<T, uint32_t>::value
|
|
|| std::is_same<T, uint16_t>::value
|
|
|| std::is_same<T, uint8_t>::value;
|
|
CHECK(valid_type);
|
|
|
|
Column<T> c;
|
|
|
|
c.type = type_[fid];
|
|
const size_t block_offset = boundary_[fid].index_begin / packing_factor_;
|
|
const size_t elem_offset = boundary_[fid].index_begin % packing_factor_;
|
|
c.index = reinterpret_cast<const T*>(&index_[block_offset]) + elem_offset;
|
|
c.index_base = index_base_[fid];
|
|
c.row_ind = &row_ind_[boundary_[fid].row_ind_begin];
|
|
c.len = boundary_[fid].index_end - boundary_[fid].index_begin;
|
|
|
|
return c;
|
|
}
|
|
|
|
public:
|
|
DataType dtype;
|
|
|
|
private:
|
|
struct ColumnBoundary {
|
|
// indicate where each column's index and row_ind is stored.
|
|
// index_begin and index_end are logical offsets, so they should be converted to
|
|
// actual offsets by scaling with packing_factor_
|
|
size_t index_begin;
|
|
size_t index_end;
|
|
size_t row_ind_begin;
|
|
size_t row_ind_end;
|
|
};
|
|
|
|
std::vector<size_t> feature_counts_;
|
|
std::vector<ColumnType> type_;
|
|
std::vector<uint32_t> index_; // index_: may store smaller integers; needs padding
|
|
std::vector<size_t> row_ind_;
|
|
std::vector<ColumnBoundary> boundary_;
|
|
|
|
size_t packing_factor_; // how many integers are stored in each slot of index_
|
|
|
|
// index_base_[fid]: least bin id for feature fid
|
|
std::vector<uint32_t> index_base_;
|
|
};
|
|
|
|
} // namespace common
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_COMMON_COLUMN_MATRIX_H_
|