522 lines
18 KiB
Python
522 lines
18 KiB
Python
import csv
|
|
import os
|
|
import tempfile
|
|
import warnings
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import scipy.sparse
|
|
from hypothesis import given, settings, strategies
|
|
from scipy.sparse import csr_matrix, rand
|
|
|
|
import xgboost as xgb
|
|
from xgboost import testing as tm
|
|
from xgboost.core import DataSplitMode
|
|
from xgboost.testing.data import np_dtypes, run_base_margin_info
|
|
|
|
dpath = "demo/data/"
|
|
rng = np.random.RandomState(1994)
|
|
|
|
|
|
class TestDMatrix:
|
|
def test_warn_missing(self):
|
|
from xgboost import data
|
|
|
|
with pytest.warns(UserWarning):
|
|
data._warn_unused_missing("uri", 4)
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("error")
|
|
data._warn_unused_missing("uri", None)
|
|
data._warn_unused_missing("uri", np.nan)
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("error")
|
|
x = rng.randn(10, 10)
|
|
y = rng.randn(10)
|
|
|
|
xgb.DMatrix(x, y, missing=4)
|
|
|
|
def test_dmatrix_numpy_init(self):
|
|
data = np.random.randn(5, 5)
|
|
dm = xgb.DMatrix(data)
|
|
assert dm.num_row() == 5
|
|
assert dm.num_col() == 5
|
|
|
|
data = np.array([[1, 2], [3, 4]])
|
|
dm = xgb.DMatrix(data)
|
|
assert dm.num_row() == 2
|
|
assert dm.num_col() == 2
|
|
|
|
# 0d array
|
|
with pytest.raises(ValueError):
|
|
xgb.DMatrix(np.array(1))
|
|
# 1d array
|
|
with pytest.raises(ValueError):
|
|
xgb.DMatrix(np.array([1, 2, 3]))
|
|
# 3d array
|
|
data = np.random.randn(5, 5, 5)
|
|
with pytest.raises(ValueError):
|
|
xgb.DMatrix(data)
|
|
# object dtype
|
|
data = np.array([["a", "b"], ["c", "d"]])
|
|
with pytest.raises(ValueError):
|
|
xgb.DMatrix(data)
|
|
|
|
def test_np_view(self):
|
|
# Sliced Float32 array
|
|
y = np.array([12, 34, 56], np.float32)[::2]
|
|
from_view = xgb.DMatrix(np.array([[]]), label=y).get_label()
|
|
from_array = xgb.DMatrix(np.array([[]]), label=y + 0).get_label()
|
|
assert from_view.shape == from_array.shape
|
|
assert (from_view == from_array).all()
|
|
|
|
# Sliced UInt array
|
|
z = np.array([12, 34, 56], np.uint32)[::2]
|
|
dmat = xgb.DMatrix(np.array([[]]))
|
|
dmat.set_uint_info("group", z)
|
|
from_view = dmat.get_uint_info("group_ptr")
|
|
dmat = xgb.DMatrix(np.array([[]]))
|
|
dmat.set_uint_info("group", z + 0)
|
|
from_array = dmat.get_uint_info("group_ptr")
|
|
assert from_view.shape == from_array.shape
|
|
assert (from_view == from_array).all()
|
|
|
|
def test_slice(self):
|
|
X = rng.randn(100, 100)
|
|
y = rng.randint(low=0, high=3, size=100).astype(np.float32)
|
|
d = xgb.DMatrix(X, y)
|
|
np.testing.assert_equal(d.get_label(), y)
|
|
|
|
fw = rng.uniform(size=100).astype(np.float32)
|
|
d.set_info(feature_weights=fw)
|
|
|
|
# base margin is per-class in multi-class classifier
|
|
base_margin = rng.randn(100, 3).astype(np.float32)
|
|
d.set_base_margin(base_margin)
|
|
np.testing.assert_allclose(d.get_base_margin().reshape(100, 3), base_margin)
|
|
|
|
ridxs = [1, 2, 3, 4, 5, 6]
|
|
sliced = d.slice(ridxs)
|
|
|
|
# Slicing works with label and other meta info fields
|
|
np.testing.assert_equal(sliced.get_label(), y[1:7])
|
|
np.testing.assert_equal(sliced.get_float_info("feature_weights"), fw)
|
|
np.testing.assert_equal(sliced.get_base_margin(), base_margin[1:7, :].flatten())
|
|
np.testing.assert_equal(
|
|
sliced.get_base_margin(), sliced.get_float_info("base_margin")
|
|
)
|
|
|
|
# Slicing a DMatrix results into a DMatrix that's equivalent to a DMatrix that's
|
|
# constructed from the corresponding NumPy slice
|
|
d2 = xgb.DMatrix(X[1:7, :], y[1:7])
|
|
d2.set_base_margin(base_margin[1:7, :])
|
|
eval_res = {}
|
|
_ = xgb.train(
|
|
{"num_class": 3, "objective": "multi:softprob", "eval_metric": "mlogloss"},
|
|
d,
|
|
num_boost_round=2,
|
|
evals=[(d2, "d2"), (sliced, "sliced")],
|
|
evals_result=eval_res,
|
|
)
|
|
np.testing.assert_equal(
|
|
eval_res["d2"]["mlogloss"], eval_res["sliced"]["mlogloss"]
|
|
)
|
|
|
|
ridxs_arr = np.array(ridxs)[1:] # handles numpy slice correctly
|
|
sliced = d.slice(ridxs_arr)
|
|
np.testing.assert_equal(sliced.get_label(), y[2:7])
|
|
|
|
def test_feature_names_slice(self):
|
|
data = np.random.randn(5, 5)
|
|
|
|
# different length
|
|
with pytest.raises(ValueError):
|
|
xgb.DMatrix(data, feature_names=list("abcdef"))
|
|
# contains duplicates
|
|
with pytest.raises(ValueError):
|
|
xgb.DMatrix(data, feature_names=["a", "b", "c", "d", "d"])
|
|
# contains symbol
|
|
with pytest.raises(ValueError):
|
|
xgb.DMatrix(data, feature_names=["a", "b", "c", "d", "e<1"])
|
|
|
|
dm = xgb.DMatrix(data)
|
|
dm.feature_names = list("abcde")
|
|
assert dm.feature_names == list("abcde")
|
|
|
|
assert dm.slice([0, 1]).num_col() == dm.num_col()
|
|
assert dm.slice([0, 1]).feature_names == dm.feature_names
|
|
|
|
with pytest.raises(ValueError, match=r"Duplicates found: \['bar'\]"):
|
|
dm.feature_names = ["bar"] * (data.shape[1] - 2) + ["a", "b"]
|
|
|
|
dm.feature_types = list("qiqiq")
|
|
assert dm.feature_types == list("qiqiq")
|
|
|
|
with pytest.raises(ValueError):
|
|
dm.feature_types = list("abcde")
|
|
|
|
# reset
|
|
dm.feature_names = None
|
|
dm.feature_types = None
|
|
assert dm.feature_names is None
|
|
assert dm.feature_types is None
|
|
|
|
def test_feature_names(self):
|
|
data = np.random.randn(100, 5)
|
|
target = np.array([0, 1] * 50)
|
|
|
|
cases = [
|
|
["Feature1", "Feature2", "Feature3", "Feature4", "Feature5"],
|
|
["要因1", "要因2", "要因3", "要因4", "要因5"],
|
|
]
|
|
|
|
for features in cases:
|
|
dm = xgb.DMatrix(data, label=target, feature_names=features)
|
|
assert dm.feature_names == features
|
|
assert dm.num_row() == 100
|
|
assert dm.num_col() == 5
|
|
|
|
params = {
|
|
"objective": "multi:softprob",
|
|
"eval_metric": "mlogloss",
|
|
"eta": 0.3,
|
|
"num_class": 3,
|
|
}
|
|
|
|
bst = xgb.train(params, dm, num_boost_round=10)
|
|
scores = bst.get_fscore()
|
|
assert list(sorted(k for k in scores)) == features
|
|
|
|
dummy = np.random.randn(5, 5)
|
|
dm = xgb.DMatrix(dummy, feature_names=features)
|
|
bst.predict(dm)
|
|
|
|
# different feature name must raises error
|
|
dm = xgb.DMatrix(dummy, feature_names=list("abcde"))
|
|
with pytest.raises(ValueError):
|
|
bst.predict(dm)
|
|
|
|
@pytest.mark.skipif(**tm.no_pandas())
|
|
def test_save_binary(self):
|
|
import pandas as pd
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
path = os.path.join(tmpdir, "m.dmatrix")
|
|
data = pd.DataFrame({"a": [0, 1], "b": [2, 3], "c": [4, 5]})
|
|
m0 = xgb.DMatrix(data.loc[:, ["a", "b"]], data["c"])
|
|
assert m0.feature_names == ["a", "b"]
|
|
m0.save_binary(path)
|
|
m1 = xgb.DMatrix(path)
|
|
assert m0.feature_names == m1.feature_names
|
|
assert m0.feature_types == m1.feature_types
|
|
|
|
def test_get_info(self):
|
|
dtrain, _ = tm.load_agaricus(__file__)
|
|
dtrain.get_float_info("label")
|
|
dtrain.get_float_info("weight")
|
|
dtrain.get_float_info("base_margin")
|
|
dtrain.get_uint_info("group_ptr")
|
|
|
|
group_len = np.array([2, 3, 4])
|
|
dtrain.set_group(group_len)
|
|
np.testing.assert_equal(group_len, dtrain.get_group())
|
|
|
|
def test_qid(self):
|
|
rows = 100
|
|
cols = 10
|
|
X, y = rng.randn(rows, cols), rng.randn(rows)
|
|
qid = rng.randint(low=0, high=10, size=rows, dtype=np.uint32)
|
|
qid = np.sort(qid)
|
|
|
|
Xy = xgb.DMatrix(X, y)
|
|
Xy.set_info(qid=qid)
|
|
group_ptr = Xy.get_uint_info("group_ptr")
|
|
assert group_ptr[0] == 0
|
|
assert group_ptr[-1] == rows
|
|
|
|
def test_feature_weights(self):
|
|
kRows = 10
|
|
kCols = 50
|
|
rng = np.random.RandomState(1994)
|
|
fw = rng.uniform(size=kCols)
|
|
X = rng.randn(kRows, kCols)
|
|
m = xgb.DMatrix(X)
|
|
m.set_info(feature_weights=fw)
|
|
np.testing.assert_allclose(fw, m.get_float_info("feature_weights"))
|
|
# Handle empty
|
|
m.set_info(feature_weights=np.empty((0,)))
|
|
|
|
assert m.get_float_info("feature_weights").shape[0] == 0
|
|
|
|
fw -= 1
|
|
|
|
with pytest.raises(ValueError):
|
|
m.set_info(feature_weights=fw)
|
|
|
|
def test_sparse_dmatrix_csr(self):
|
|
nrow = 100
|
|
ncol = 1000
|
|
x = rand(nrow, ncol, density=0.0005, format="csr", random_state=rng)
|
|
assert x.indices.max() < ncol
|
|
x.data[:] = 1
|
|
dtrain = xgb.DMatrix(x, label=rng.binomial(1, 0.3, nrow))
|
|
assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol)
|
|
watchlist = [(dtrain, "train")]
|
|
param = {"max_depth": 3, "objective": "binary:logistic"}
|
|
bst = xgb.train(param, dtrain, 5, watchlist)
|
|
bst.predict(dtrain)
|
|
|
|
i32 = csr_matrix((x.data.astype(np.int32), x.indices, x.indptr), shape=x.shape)
|
|
f32 = csr_matrix(
|
|
(i32.data.astype(np.float32), x.indices, x.indptr), shape=x.shape
|
|
)
|
|
di32 = xgb.DMatrix(i32)
|
|
df32 = xgb.DMatrix(f32)
|
|
dense = xgb.DMatrix(f32.toarray(), missing=0)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
path = os.path.join(tmpdir, "f32.dmatrix")
|
|
df32.save_binary(path)
|
|
with open(path, "rb") as fd:
|
|
df32_buffer = np.array(fd.read())
|
|
path = os.path.join(tmpdir, "f32.dmatrix")
|
|
di32.save_binary(path)
|
|
with open(path, "rb") as fd:
|
|
di32_buffer = np.array(fd.read())
|
|
|
|
path = os.path.join(tmpdir, "dense.dmatrix")
|
|
dense.save_binary(path)
|
|
with open(path, "rb") as fd:
|
|
dense_buffer = np.array(fd.read())
|
|
|
|
np.testing.assert_equal(df32_buffer, di32_buffer)
|
|
np.testing.assert_equal(df32_buffer, dense_buffer)
|
|
|
|
def test_sparse_dmatrix_csc(self):
|
|
nrow = 1000
|
|
ncol = 100
|
|
x = rand(nrow, ncol, density=0.0005, format="csc", random_state=rng)
|
|
assert x.indices.max() < nrow - 1
|
|
x.data[:] = 1
|
|
dtrain = xgb.DMatrix(x, label=rng.binomial(1, 0.3, nrow))
|
|
assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol)
|
|
watchlist = [(dtrain, "train")]
|
|
param = {"max_depth": 3, "objective": "binary:logistic"}
|
|
bst = xgb.train(param, dtrain, 5, watchlist)
|
|
bst.predict(dtrain)
|
|
|
|
def test_unknown_data(self):
|
|
class Data:
|
|
pass
|
|
|
|
with pytest.raises(TypeError):
|
|
with pytest.warns(UserWarning):
|
|
d = Data()
|
|
xgb.DMatrix(d)
|
|
|
|
from scipy import sparse
|
|
|
|
rng = np.random.RandomState(1994)
|
|
X = rng.rand(10, 10)
|
|
y = rng.rand(10)
|
|
X = sparse.dok_matrix(X)
|
|
Xy = xgb.DMatrix(X, y)
|
|
assert Xy.num_row() == 10
|
|
assert Xy.num_col() == 10
|
|
|
|
@pytest.mark.skipif(**tm.no_pandas())
|
|
def test_np_categorical(self):
|
|
n_features = 10
|
|
X, y = tm.make_categorical(10, n_features, n_categories=4, onehot=False)
|
|
X = X.values.astype(np.float32)
|
|
feature_types = ["c"] * n_features
|
|
|
|
assert isinstance(X, np.ndarray)
|
|
Xy = xgb.DMatrix(X, y, feature_types=feature_types)
|
|
np.testing.assert_equal(np.array(Xy.feature_types), np.array(feature_types))
|
|
|
|
def test_scipy_categorical(self):
|
|
from scipy import sparse
|
|
|
|
n_features = 10
|
|
X, y = tm.make_categorical(10, n_features, n_categories=4, onehot=False)
|
|
X = X.values.astype(np.float32)
|
|
feature_types = ["c"] * n_features
|
|
|
|
X[1, 3] = np.NAN
|
|
X[2, 4] = np.NAN
|
|
X = sparse.csr_matrix(X)
|
|
|
|
Xy = xgb.DMatrix(X, y, feature_types=feature_types)
|
|
np.testing.assert_equal(np.array(Xy.feature_types), np.array(feature_types))
|
|
|
|
X = sparse.csc_matrix(X)
|
|
|
|
Xy = xgb.DMatrix(X, y, feature_types=feature_types)
|
|
np.testing.assert_equal(np.array(Xy.feature_types), np.array(feature_types))
|
|
|
|
X = sparse.coo_matrix(X)
|
|
|
|
Xy = xgb.DMatrix(X, y, feature_types=feature_types)
|
|
np.testing.assert_equal(np.array(Xy.feature_types), np.array(feature_types))
|
|
|
|
def test_uri_categorical(self):
|
|
path = os.path.join(dpath, "agaricus.txt.train")
|
|
feature_types = ["q"] * 5 + ["c"] + ["q"] * 120
|
|
Xy = xgb.DMatrix(
|
|
path + "?indexing_mode=1&format=libsvm", feature_types=feature_types
|
|
)
|
|
np.testing.assert_equal(np.array(Xy.feature_types), np.array(feature_types))
|
|
|
|
def test_base_margin(self) -> None:
|
|
run_base_margin_info(np.asarray, xgb.DMatrix, "cpu")
|
|
|
|
@given(
|
|
strategies.integers(0, 1000),
|
|
strategies.integers(0, 100),
|
|
strategies.fractions(0, 1),
|
|
)
|
|
@settings(deadline=None, print_blob=True)
|
|
def test_to_csr(self, n_samples, n_features, sparsity) -> None:
|
|
if n_samples == 0 or n_features == 0 or sparsity == 1.0:
|
|
csr = scipy.sparse.csr_matrix(np.empty((0, 0)))
|
|
else:
|
|
csr = tm.make_sparse_regression(n_samples, n_features, sparsity, False)[
|
|
0
|
|
].astype(np.float32)
|
|
m = xgb.DMatrix(data=csr)
|
|
ret = m.get_data()
|
|
np.testing.assert_equal(csr.indptr, ret.indptr)
|
|
np.testing.assert_equal(csr.data, ret.data)
|
|
np.testing.assert_equal(csr.indices, ret.indices)
|
|
|
|
def test_dtypes(self) -> None:
|
|
n_samples = 128
|
|
n_features = 16
|
|
for orig, x in np_dtypes(n_samples, n_features):
|
|
m0 = xgb.DMatrix(orig)
|
|
m1 = xgb.DMatrix(x)
|
|
assert tm.predictor_equal(m0, m1)
|
|
|
|
|
|
@pytest.mark.skipif(tm.is_windows(), reason="Rabit does not run on windows")
|
|
class TestDMatrixColumnSplit:
|
|
def test_numpy(self):
|
|
def verify_numpy():
|
|
data = np.random.randn(5, 5)
|
|
dm = xgb.DMatrix(data, data_split_mode=DataSplitMode.COL)
|
|
assert dm.num_row() == 5
|
|
assert dm.num_col() == 5 * xgb.collective.get_world_size()
|
|
assert dm.feature_names is None
|
|
assert dm.feature_types is None
|
|
|
|
tm.run_with_rabit(world_size=3, test_fn=verify_numpy)
|
|
|
|
def test_numpy_feature_names(self):
|
|
def verify_numpy_feature_names():
|
|
world_size = xgb.collective.get_world_size()
|
|
data = np.random.randn(5, 5)
|
|
feature_names = [f"feature{x}" for x in range(5)]
|
|
feature_types = ["float"] * 5
|
|
dm = xgb.DMatrix(
|
|
data,
|
|
feature_names=feature_names,
|
|
feature_types=feature_types,
|
|
data_split_mode=DataSplitMode.COL,
|
|
)
|
|
assert dm.num_row() == 5
|
|
assert dm.num_col() == 5 * world_size
|
|
assert len(dm.feature_names) == 5 * world_size
|
|
assert dm.feature_names == tm.column_split_feature_names(
|
|
feature_names, world_size
|
|
)
|
|
assert len(dm.feature_types) == 5 * world_size
|
|
assert dm.feature_types == ["float"] * 5 * world_size
|
|
|
|
tm.run_with_rabit(world_size=3, test_fn=verify_numpy_feature_names)
|
|
|
|
def test_csr(self):
|
|
def verify_csr():
|
|
indptr = np.array([0, 2, 3, 6])
|
|
indices = np.array([0, 2, 2, 0, 1, 2])
|
|
data = np.array([1, 2, 3, 4, 5, 6])
|
|
X = scipy.sparse.csr_matrix((data, indices, indptr), shape=(3, 3))
|
|
dtrain = xgb.DMatrix(X, data_split_mode=DataSplitMode.COL)
|
|
assert dtrain.num_row() == 3
|
|
assert dtrain.num_col() == 3 * xgb.collective.get_world_size()
|
|
|
|
tm.run_with_rabit(world_size=3, test_fn=verify_csr)
|
|
|
|
def test_csc(self):
|
|
def verify_csc():
|
|
row = np.array([0, 2, 2, 0, 1, 2])
|
|
col = np.array([0, 0, 1, 2, 2, 2])
|
|
data = np.array([1, 2, 3, 4, 5, 6])
|
|
X = scipy.sparse.csc_matrix((data, (row, col)), shape=(3, 3))
|
|
dtrain = xgb.DMatrix(X, data_split_mode=DataSplitMode.COL)
|
|
assert dtrain.num_row() == 3
|
|
assert dtrain.num_col() == 3 * xgb.collective.get_world_size()
|
|
|
|
tm.run_with_rabit(world_size=3, test_fn=verify_csc)
|
|
|
|
def test_coo(self):
|
|
def verify_coo():
|
|
row = np.array([0, 2, 2, 0, 1, 2])
|
|
col = np.array([0, 0, 1, 2, 2, 2])
|
|
data = np.array([1, 2, 3, 4, 5, 6])
|
|
X = scipy.sparse.coo_matrix((data, (row, col)), shape=(3, 3))
|
|
dtrain = xgb.DMatrix(X, data_split_mode=DataSplitMode.COL)
|
|
assert dtrain.num_row() == 3
|
|
assert dtrain.num_col() == 3 * xgb.collective.get_world_size()
|
|
|
|
tm.run_with_rabit(world_size=3, test_fn=verify_coo)
|
|
|
|
def test_uri(self):
|
|
def verify_uri():
|
|
rank = xgb.collective.get_rank()
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
filename = os.path.join(tmpdir, f"test_data_{rank}.csv")
|
|
|
|
data = np.random.rand(5, 5)
|
|
with open(filename, mode="w", newline="") as file:
|
|
writer = csv.writer(file)
|
|
for row in data:
|
|
writer.writerow(row)
|
|
dtrain = xgb.DMatrix(
|
|
f"{filename}?format=csv", data_split_mode=DataSplitMode.COL
|
|
)
|
|
assert dtrain.num_row() == 5
|
|
assert dtrain.num_col() == 5 * xgb.collective.get_world_size()
|
|
|
|
tm.run_with_rabit(world_size=3, test_fn=verify_uri)
|
|
|
|
def test_list(self):
|
|
def verify_list():
|
|
data = [
|
|
[1, 2, 3, 4, 5],
|
|
[6, 7, 8, 9, 10],
|
|
[11, 12, 13, 14, 15],
|
|
[16, 17, 18, 19, 20],
|
|
[21, 22, 23, 24, 25],
|
|
]
|
|
dm = xgb.DMatrix(data, data_split_mode=DataSplitMode.COL)
|
|
assert dm.num_row() == 5
|
|
assert dm.num_col() == 5 * xgb.collective.get_world_size()
|
|
|
|
tm.run_with_rabit(world_size=3, test_fn=verify_list)
|
|
|
|
def test_tuple(self):
|
|
def verify_tuple():
|
|
data = (
|
|
(1, 2, 3, 4, 5),
|
|
(6, 7, 8, 9, 10),
|
|
(11, 12, 13, 14, 15),
|
|
(16, 17, 18, 19, 20),
|
|
(21, 22, 23, 24, 25),
|
|
)
|
|
dm = xgb.DMatrix(data, data_split_mode=DataSplitMode.COL)
|
|
assert dm.num_row() == 5
|
|
assert dm.num_col() == 5 * xgb.collective.get_world_size()
|
|
|
|
tm.run_with_rabit(world_size=3, test_fn=verify_tuple)
|