* Rename `GenericParameter` to `Context`. * Rename header file to reflect the change. * Rename all references.
334 lines
8.9 KiB
C++
334 lines
8.9 KiB
C++
/*!
|
|
* Copyright 2021 by XGBoost Contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/context.h>
|
|
#include <xgboost/host_device_vector.h>
|
|
#include <xgboost/linalg.h>
|
|
|
|
#include <numeric>
|
|
|
|
#include "../../../src/common/linalg_op.h"
|
|
|
|
namespace xgboost {
|
|
namespace linalg {
|
|
namespace {
|
|
auto kCpuId = Context::kCpuId;
|
|
}
|
|
|
|
auto MakeMatrixFromTest(HostDeviceVector<float> *storage, size_t n_rows, size_t n_cols) {
|
|
storage->Resize(n_rows * n_cols);
|
|
auto &h_storage = storage->HostVector();
|
|
|
|
std::iota(h_storage.begin(), h_storage.end(), 0);
|
|
|
|
auto m = linalg::TensorView<float, 2>{h_storage, {n_rows, static_cast<size_t>(n_cols)}, -1};
|
|
return m;
|
|
}
|
|
|
|
TEST(Linalg, MatrixView) {
|
|
size_t kRows = 31, kCols = 77;
|
|
HostDeviceVector<float> storage;
|
|
auto m = MakeMatrixFromTest(&storage, kRows, kCols);
|
|
ASSERT_EQ(m.DeviceIdx(), kCpuId);
|
|
ASSERT_EQ(m(0, 0), 0);
|
|
ASSERT_EQ(m(kRows - 1, kCols - 1), storage.Size() - 1);
|
|
}
|
|
|
|
TEST(Linalg, VectorView) {
|
|
size_t kRows = 31, kCols = 77;
|
|
HostDeviceVector<float> storage;
|
|
auto m = MakeMatrixFromTest(&storage, kRows, kCols);
|
|
auto v = m.Slice(linalg::All(), 3);
|
|
for (size_t i = 0; i < v.Size(); ++i) {
|
|
ASSERT_EQ(v(i), m(i, 3));
|
|
}
|
|
|
|
ASSERT_EQ(v(0), 3);
|
|
}
|
|
|
|
TEST(Linalg, TensorView) {
|
|
std::vector<double> data(2 * 3 * 4, 0);
|
|
std::iota(data.begin(), data.end(), 0);
|
|
|
|
auto t = MakeTensorView(data, {2, 3, 4}, -1);
|
|
ASSERT_EQ(t.Shape()[0], 2);
|
|
ASSERT_EQ(t.Shape()[1], 3);
|
|
ASSERT_EQ(t.Shape()[2], 4);
|
|
|
|
float v = t(0, 1, 2);
|
|
ASSERT_EQ(v, 6);
|
|
|
|
auto s = t.Slice(1, All(), All());
|
|
ASSERT_EQ(s.Shape().size(), 2);
|
|
ASSERT_EQ(s.Shape()[0], 3);
|
|
ASSERT_EQ(s.Shape()[1], 4);
|
|
|
|
std::vector<std::vector<double>> sol{
|
|
{12.0, 13.0, 14.0, 15.0}, {16.0, 17.0, 18.0, 19.0}, {20.0, 21.0, 22.0, 23.0}};
|
|
for (size_t i = 0; i < s.Shape()[0]; ++i) {
|
|
for (size_t j = 0; j < s.Shape()[1]; ++j) {
|
|
ASSERT_EQ(s(i, j), sol[i][j]);
|
|
}
|
|
}
|
|
|
|
{
|
|
// as vector
|
|
TensorView<double, 1> vec{data, {data.size()}, -1};
|
|
ASSERT_EQ(vec.Size(), data.size());
|
|
ASSERT_EQ(vec.Shape(0), data.size());
|
|
ASSERT_EQ(vec.Shape().size(), 1);
|
|
for (size_t i = 0; i < data.size(); ++i) {
|
|
ASSERT_EQ(vec(i), data[i]);
|
|
}
|
|
}
|
|
|
|
{
|
|
// as matrix
|
|
TensorView<double, 2> mat(data, {6, 4}, -1);
|
|
auto s = mat.Slice(2, All());
|
|
ASSERT_EQ(s.Shape().size(), 1);
|
|
s = mat.Slice(All(), 1);
|
|
ASSERT_EQ(s.Shape().size(), 1);
|
|
}
|
|
|
|
{
|
|
// assignment
|
|
TensorView<double, 3> t{data, {2, 3, 4}, 0};
|
|
double pi = 3.14159;
|
|
auto old = t(1, 2, 3);
|
|
t(1, 2, 3) = pi;
|
|
ASSERT_EQ(t(1, 2, 3), pi);
|
|
t(1, 2, 3) = old;
|
|
ASSERT_EQ(t(1, 2, 3), old);
|
|
}
|
|
|
|
{
|
|
// Don't assign the initial dimension, tensor should be able to deduce the correct dim
|
|
// for Slice.
|
|
auto t = MakeTensorView(data, {2, 3, 4}, 0);
|
|
auto s = t.Slice(1, 2, All());
|
|
static_assert(decltype(s)::kDimension == 1, "");
|
|
}
|
|
{
|
|
auto t = MakeTensorView(data, {2, 3, 4}, 0);
|
|
auto s = t.Slice(1, linalg::All(), 1);
|
|
ASSERT_EQ(s(0), 13);
|
|
ASSERT_EQ(s(1), 17);
|
|
ASSERT_EQ(s(2), 21);
|
|
}
|
|
{
|
|
// range slice
|
|
auto t = MakeTensorView(data, {2, 3, 4}, 0);
|
|
auto s = t.Slice(linalg::All(), linalg::Range(1, 3), 2);
|
|
static_assert(decltype(s)::kDimension == 2, "");
|
|
std::vector<double> sol{6, 10, 18, 22};
|
|
auto k = 0;
|
|
for (size_t i = 0; i < s.Shape(0); ++i) {
|
|
for (size_t j = 0; j < s.Shape(1); ++j) {
|
|
ASSERT_EQ(s(i, j), sol.at(k));
|
|
k++;
|
|
}
|
|
}
|
|
ASSERT_FALSE(s.CContiguous());
|
|
}
|
|
{
|
|
// range slice
|
|
auto t = MakeTensorView(data, {2, 3, 4}, 0);
|
|
auto s = t.Slice(1, linalg::Range(1, 3), linalg::Range(1, 3));
|
|
static_assert(decltype(s)::kDimension == 2, "");
|
|
std::vector<double> sol{17, 18, 21, 22};
|
|
auto k = 0;
|
|
for (size_t i = 0; i < s.Shape(0); ++i) {
|
|
for (size_t j = 0; j < s.Shape(1); ++j) {
|
|
ASSERT_EQ(s(i, j), sol.at(k));
|
|
k++;
|
|
}
|
|
}
|
|
ASSERT_FALSE(s.CContiguous());
|
|
}
|
|
{
|
|
// same as no slice.
|
|
auto t = MakeTensorView(data, {2, 3, 4}, 0);
|
|
auto s = t.Slice(linalg::All(), linalg::Range(0, 3), linalg::Range(0, 4));
|
|
static_assert(decltype(s)::kDimension == 3, "");
|
|
auto all = t.Slice(linalg::All(), linalg::All(), linalg::All());
|
|
for (size_t i = 0; i < s.Shape(0); ++i) {
|
|
for (size_t j = 0; j < s.Shape(1); ++j) {
|
|
for (size_t k = 0; k < s.Shape(2); ++k) {
|
|
ASSERT_EQ(s(i, j, k), all(i, j, k));
|
|
}
|
|
}
|
|
}
|
|
ASSERT_TRUE(s.CContiguous());
|
|
ASSERT_TRUE(all.CContiguous());
|
|
}
|
|
|
|
{
|
|
// copy and move constructor.
|
|
auto t = MakeTensorView(data, {2, 3, 4}, kCpuId);
|
|
auto from_copy = t;
|
|
auto from_move = std::move(t);
|
|
for (size_t i = 0; i < t.Shape().size(); ++i) {
|
|
ASSERT_EQ(from_copy.Shape(i), from_move.Shape(i));
|
|
ASSERT_EQ(from_copy.Stride(i), from_copy.Stride(i));
|
|
}
|
|
}
|
|
|
|
{
|
|
// multiple slices
|
|
auto t = MakeTensorView(data, {2, 3, 4}, kCpuId);
|
|
auto s_0 = t.Slice(linalg::All(), linalg::Range(0, 2), linalg::Range(1, 4));
|
|
ASSERT_FALSE(s_0.CContiguous());
|
|
auto s_1 = s_0.Slice(1, 1, linalg::Range(0, 2));
|
|
ASSERT_EQ(s_1.Size(), 2);
|
|
ASSERT_TRUE(s_1.CContiguous());
|
|
ASSERT_TRUE(s_1.Contiguous());
|
|
ASSERT_EQ(s_1(0), 17);
|
|
ASSERT_EQ(s_1(1), 18);
|
|
|
|
auto s_2 = s_0.Slice(1, linalg::All(), linalg::Range(0, 2));
|
|
std::vector<double> sol{13, 14, 17, 18};
|
|
auto k = 0;
|
|
for (size_t i = 0; i < s_2.Shape(0); i++) {
|
|
for (size_t j = 0; j < s_2.Shape(1); ++j) {
|
|
ASSERT_EQ(s_2(i, j), sol[k]);
|
|
k++;
|
|
}
|
|
}
|
|
}
|
|
{
|
|
// f-contiguous
|
|
TensorView<double, 3> t{data, {4, 3, 2}, {1, 4, 12}, kCpuId};
|
|
ASSERT_TRUE(t.Contiguous());
|
|
ASSERT_TRUE(t.FContiguous());
|
|
ASSERT_FALSE(t.CContiguous());
|
|
}
|
|
}
|
|
|
|
TEST(Linalg, Tensor) {
|
|
{
|
|
Tensor<float, 3> t{{2, 3, 4}, kCpuId};
|
|
auto view = t.View(kCpuId);
|
|
|
|
auto const &as_const = t;
|
|
auto k_view = as_const.View(kCpuId);
|
|
|
|
size_t n = 2 * 3 * 4;
|
|
ASSERT_EQ(t.Size(), n);
|
|
ASSERT_TRUE(
|
|
std::equal(k_view.Values().cbegin(), k_view.Values().cend(), view.Values().cbegin()));
|
|
|
|
Tensor<float, 3> t_0{std::move(t)};
|
|
ASSERT_EQ(t_0.Size(), n);
|
|
ASSERT_EQ(t_0.Shape(0), 2);
|
|
ASSERT_EQ(t_0.Shape(1), 3);
|
|
ASSERT_EQ(t_0.Shape(2), 4);
|
|
}
|
|
{
|
|
// Reshape
|
|
Tensor<float, 3> t{{2, 3, 4}, kCpuId};
|
|
t.Reshape(4, 3, 2);
|
|
ASSERT_EQ(t.Size(), 24);
|
|
ASSERT_EQ(t.Shape(2), 2);
|
|
t.Reshape(1);
|
|
ASSERT_EQ(t.Size(), 1);
|
|
t.Reshape(0, 0, 0);
|
|
ASSERT_EQ(t.Size(), 0);
|
|
t.Reshape(0, 3, 0);
|
|
ASSERT_EQ(t.Size(), 0);
|
|
ASSERT_EQ(t.Shape(1), 3);
|
|
t.Reshape(3, 3, 3);
|
|
ASSERT_EQ(t.Size(), 27);
|
|
}
|
|
}
|
|
|
|
TEST(Linalg, Empty) {
|
|
{
|
|
auto t = TensorView<double, 2>{{}, {0, 3}, kCpuId};
|
|
for (int32_t i : {0, 1, 2}) {
|
|
auto s = t.Slice(All(), i);
|
|
ASSERT_EQ(s.Size(), 0);
|
|
ASSERT_EQ(s.Shape().size(), 1);
|
|
ASSERT_EQ(s.Shape(0), 0);
|
|
}
|
|
}
|
|
{
|
|
auto t = Tensor<double, 2>{{0, 3}, kCpuId};
|
|
ASSERT_EQ(t.Size(), 0);
|
|
auto view = t.View(kCpuId);
|
|
|
|
for (int32_t i : {0, 1, 2}) {
|
|
auto s = view.Slice(All(), i);
|
|
ASSERT_EQ(s.Size(), 0);
|
|
ASSERT_EQ(s.Shape().size(), 1);
|
|
ASSERT_EQ(s.Shape(0), 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Linalg, ArrayInterface) {
|
|
auto cpu = kCpuId;
|
|
auto t = Tensor<double, 2>{{3, 3}, cpu};
|
|
auto v = t.View(cpu);
|
|
std::iota(v.Values().begin(), v.Values().end(), 0);
|
|
auto arr = Json::Load(StringView{ArrayInterfaceStr(v)});
|
|
ASSERT_EQ(get<Integer>(arr["shape"][0]), 3);
|
|
ASSERT_EQ(get<Integer>(arr["strides"][0]), 3 * sizeof(double));
|
|
|
|
ASSERT_FALSE(get<Boolean>(arr["data"][1]));
|
|
ASSERT_EQ(reinterpret_cast<double *>(get<Integer>(arr["data"][0])), v.Values().data());
|
|
|
|
TensorView<double const, 2> as_const = v;
|
|
auto const_arr = ArrayInterface(as_const);
|
|
ASSERT_TRUE(get<Boolean>(const_arr["data"][1]));
|
|
}
|
|
|
|
TEST(Linalg, Popc) {
|
|
{
|
|
uint32_t v{0};
|
|
ASSERT_EQ(detail::NativePopc(v), 0);
|
|
ASSERT_EQ(detail::Popc(v), 0);
|
|
v = 1;
|
|
ASSERT_EQ(detail::NativePopc(v), 1);
|
|
ASSERT_EQ(detail::Popc(v), 1);
|
|
v = 0xffffffff;
|
|
ASSERT_EQ(detail::NativePopc(v), 32);
|
|
ASSERT_EQ(detail::Popc(v), 32);
|
|
}
|
|
{
|
|
uint64_t v{0};
|
|
ASSERT_EQ(detail::NativePopc(v), 0);
|
|
ASSERT_EQ(detail::Popc(v), 0);
|
|
v = 1;
|
|
ASSERT_EQ(detail::NativePopc(v), 1);
|
|
ASSERT_EQ(detail::Popc(v), 1);
|
|
v = 0xffffffff;
|
|
ASSERT_EQ(detail::NativePopc(v), 32);
|
|
ASSERT_EQ(detail::Popc(v), 32);
|
|
v = 0xffffffffffffffff;
|
|
ASSERT_EQ(detail::NativePopc(v), 64);
|
|
ASSERT_EQ(detail::Popc(v), 64);
|
|
}
|
|
}
|
|
|
|
TEST(Linalg, Stack) {
|
|
Tensor<float, 3> l{{2, 3, 4}, kCpuId};
|
|
ElementWiseTransformHost(l.View(kCpuId), omp_get_max_threads(),
|
|
[=](size_t i, float) { return i; });
|
|
Tensor<float, 3> r_0{{2, 3, 4}, kCpuId};
|
|
ElementWiseTransformHost(r_0.View(kCpuId), omp_get_max_threads(),
|
|
[=](size_t i, float) { return i; });
|
|
|
|
Stack(&l, r_0);
|
|
|
|
Tensor<float, 3> r_1{{0, 3, 4}, kCpuId};
|
|
Stack(&l, r_1);
|
|
ASSERT_EQ(l.Shape(0), 4);
|
|
|
|
Stack(&r_1, l);
|
|
ASSERT_EQ(r_1.Shape(0), l.Shape(0));
|
|
}
|
|
} // namespace linalg
|
|
} // namespace xgboost
|