xgboost/tests/python/test_with_dask.py
Christian Lorentzen cf4f019ed6
[Breaking] Change default evaluation metric for classification to logloss / mlogloss (#6183)
* Change DefaultEvalMetric of classification from error to logloss

* Change default binary metric in plugin/example/custom_obj.cc

* Set old error metric in python tests

* Set old error metric in R tests

* Fix missed eval metrics and typos in R tests

* Fix setting eval_metric twice in R tests

* Add warning for empty eval_metric for classification

* Fix Dask tests

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-10-02 12:06:47 -07:00

708 lines
26 KiB
Python

import testing as tm
import pytest
import xgboost as xgb
import sys
import numpy as np
import json
import asyncio
from sklearn.datasets import make_classification
import os
import subprocess
from hypothesis import given, strategies, settings, note
from test_updaters import hist_parameter_strategy, exact_parameter_strategy
if sys.platform.startswith("win"):
pytest.skip("Skipping dask tests on Windows", allow_module_level=True)
pytestmark = pytest.mark.skipif(**tm.no_dask())
try:
from distributed import LocalCluster, Client
from distributed.utils_test import client, loop, cluster_fixture
import dask.dataframe as dd
import dask.array as da
from xgboost.dask import DaskDMatrix
except ImportError:
LocalCluster = None
Client = None
client = None
loop = None
cluster_fixture = None
dd = None
da = None
DaskDMatrix = None
kRows = 1000
kCols = 10
kWorkers = 5
def generate_array():
partition_size = 20
X = da.random.random((kRows, kCols), partition_size)
y = da.random.random(kRows, partition_size)
return X, y
def test_from_dask_dataframe():
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
X, y = generate_array()
X = dd.from_dask_array(X)
y = dd.from_dask_array(y)
dtrain = DaskDMatrix(client, X, y)
booster = xgb.dask.train(
client, {}, dtrain, num_boost_round=2)['booster']
prediction = xgb.dask.predict(client, model=booster, data=dtrain)
assert prediction.ndim == 1
assert isinstance(prediction, da.Array)
assert prediction.shape[0] == kRows
with pytest.raises(ValueError):
# evals_result is not supported in dask interface.
xgb.dask.train(
client, {}, dtrain, num_boost_round=2, evals_result={})
# force prediction to be computed
from_dmatrix = prediction.compute()
prediction = xgb.dask.predict(client, model=booster, data=X)
from_df = prediction.compute()
assert isinstance(prediction, dd.Series)
assert np.all(prediction.compute().values == from_dmatrix)
assert np.all(from_dmatrix == from_df.to_numpy())
series_predictions = xgb.dask.inplace_predict(client, booster, X)
assert isinstance(series_predictions, dd.Series)
np.testing.assert_allclose(series_predictions.compute().values,
from_dmatrix)
def test_from_dask_array():
with LocalCluster(n_workers=kWorkers, threads_per_worker=5) as cluster:
with Client(cluster) as client:
X, y = generate_array()
dtrain = DaskDMatrix(client, X, y)
# results is {'booster': Booster, 'history': {...}}
result = xgb.dask.train(client, {}, dtrain)
prediction = xgb.dask.predict(client, result, dtrain)
assert prediction.shape[0] == kRows
assert isinstance(prediction, da.Array)
# force prediction to be computed
prediction = prediction.compute()
booster = result['booster']
single_node_predt = booster.predict(
xgb.DMatrix(X.compute())
)
np.testing.assert_allclose(prediction, single_node_predt)
config = json.loads(booster.save_config())
assert int(config['learner']['generic_param']['nthread']) == 5
from_arr = xgb.dask.predict(
client, model=booster, data=X)
assert isinstance(from_arr, da.Array)
assert np.all(single_node_predt == from_arr.compute())
def test_dask_predict_shape_infer():
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
X, y = make_classification(n_samples=1000, n_informative=5,
n_classes=3)
X_ = dd.from_array(X, chunksize=100)
y_ = dd.from_array(y, chunksize=100)
dtrain = xgb.dask.DaskDMatrix(client, data=X_, label=y_)
model = xgb.dask.train(
client,
{"objective": "multi:softprob", "num_class": 3},
dtrain=dtrain
)
preds = xgb.dask.predict(client, model, dtrain)
assert preds.shape[0] == preds.compute().shape[0]
assert preds.shape[1] == preds.compute().shape[1]
@pytest.mark.parametrize("tree_method", ["hist", "approx"])
def test_boost_from_prediction(tree_method):
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
X_ = dd.from_array(X, chunksize=100)
y_ = dd.from_array(y, chunksize=100)
with LocalCluster(n_workers=4) as cluster:
with Client(cluster) as client:
model_0 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3,
random_state=123,
n_estimators=4,
tree_method=tree_method,
)
model_0.fit(X=X_, y=y_)
margin = model_0.predict_proba(X_, output_margin=True)
model_1 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3,
random_state=123,
n_estimators=4,
tree_method=tree_method,
)
model_1.fit(X=X_, y=y_, base_margin=margin)
predictions_1 = model_1.predict(X_, base_margin=margin)
proba_1 = model_1.predict_proba(X_, base_margin=margin)
cls_2 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3,
random_state=123,
n_estimators=8,
tree_method=tree_method,
)
cls_2.fit(X=X_, y=y_)
predictions_2 = cls_2.predict(X_)
proba_2 = cls_2.predict_proba(X_)
cls_3 = xgb.dask.DaskXGBClassifier(
learning_rate=0.3,
random_state=123,
n_estimators=8,
tree_method=tree_method,
)
cls_3.fit(X=X_, y=y_)
proba_3 = cls_3.predict_proba(X_)
# compute variance of probability percentages between two of the
# same model, use this to check to make sure approx is functioning
# within normal parameters
expected_variance = np.max(np.abs(proba_3 - proba_2)).compute()
if expected_variance > 0:
margin_variance = np.max(np.abs(proba_1 - proba_2)).compute()
# Ensure the margin variance is less than the expected variance + 10%
assert np.all(margin_variance <= expected_variance + .1)
else:
np.testing.assert_equal(predictions_1.compute(), predictions_2.compute())
np.testing.assert_almost_equal(proba_1.compute(), proba_2.compute())
def test_dask_missing_value_reg():
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
X_0 = np.ones((20 // 2, kCols))
X_1 = np.zeros((20 // 2, kCols))
X = np.concatenate([X_0, X_1], axis=0)
np.random.shuffle(X)
X = da.from_array(X)
X = X.rechunk(20, 1)
y = da.random.randint(0, 3, size=20)
y.rechunk(20)
regressor = xgb.dask.DaskXGBRegressor(verbosity=1, n_estimators=2,
missing=0.0)
regressor.client = client
regressor.set_params(tree_method='hist')
regressor.fit(X, y, eval_set=[(X, y)])
dd_predt = regressor.predict(X).compute()
np_X = X.compute()
np_predt = regressor.get_booster().predict(
xgb.DMatrix(np_X, missing=0.0))
np.testing.assert_allclose(np_predt, dd_predt)
def test_dask_missing_value_cls():
with LocalCluster() as cluster:
with Client(cluster) as client:
X_0 = np.ones((kRows // 2, kCols))
X_1 = np.zeros((kRows // 2, kCols))
X = np.concatenate([X_0, X_1], axis=0)
np.random.shuffle(X)
X = da.from_array(X)
X = X.rechunk(20, None)
y = da.random.randint(0, 3, size=kRows)
y = y.rechunk(20, 1)
cls = xgb.dask.DaskXGBClassifier(verbosity=1, n_estimators=2,
tree_method='hist',
missing=0.0)
cls.client = client
cls.fit(X, y, eval_set=[(X, y)])
dd_pred_proba = cls.predict_proba(X).compute()
np_X = X.compute()
np_pred_proba = cls.get_booster().predict(
xgb.DMatrix(np_X, missing=0.0))
np.testing.assert_allclose(np_pred_proba, dd_pred_proba)
cls = xgb.dask.DaskXGBClassifier()
assert hasattr(cls, 'missing')
def test_dask_regressor():
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
X, y = generate_array()
regressor = xgb.dask.DaskXGBRegressor(verbosity=1, n_estimators=2)
regressor.set_params(tree_method='hist')
regressor.client = client
regressor.fit(X, y, eval_set=[(X, y)])
prediction = regressor.predict(X)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
history = regressor.evals_result()
assert isinstance(prediction, da.Array)
assert isinstance(history, dict)
assert list(history['validation_0'].keys())[0] == 'rmse'
assert len(history['validation_0']['rmse']) == 2
def test_dask_classifier():
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
X, y = generate_array()
y = (y * 10).astype(np.int32)
classifier = xgb.dask.DaskXGBClassifier(
verbosity=1, n_estimators=2, eval_metric='merror')
classifier.client = client
classifier.fit(X, y, eval_set=[(X, y)])
prediction = classifier.predict(X)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
history = classifier.evals_result()
assert isinstance(prediction, da.Array)
assert isinstance(history, dict)
assert list(history.keys())[0] == 'validation_0'
assert list(history['validation_0'].keys())[0] == 'merror'
assert len(list(history['validation_0'])) == 1
assert len(history['validation_0']['merror']) == 2
# Test .predict_proba()
probas = classifier.predict_proba(X)
assert classifier.n_classes_ == 10
assert probas.ndim == 2
assert probas.shape[0] == kRows
assert probas.shape[1] == 10
cls_booster = classifier.get_booster()
single_node_proba = cls_booster.inplace_predict(X.compute())
np.testing.assert_allclose(single_node_proba,
probas.compute())
# Test with dataframe.
X_d = dd.from_dask_array(X)
y_d = dd.from_dask_array(y)
classifier.fit(X_d, y_d)
assert classifier.n_classes_ == 10
prediction = classifier.predict(X_d)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
@pytest.mark.skipif(**tm.no_sklearn())
def test_sklearn_grid_search():
from sklearn.model_selection import GridSearchCV
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
X, y = generate_array()
reg = xgb.dask.DaskXGBRegressor(learning_rate=0.1,
tree_method='hist')
reg.client = client
model = GridSearchCV(reg, {'max_depth': [2, 4],
'n_estimators': [5, 10]},
cv=2, verbose=1, iid=True)
model.fit(X, y)
# Expect unique results for each parameter value This confirms
# sklearn is able to successfully update the parameter
means = model.cv_results_['mean_test_score']
assert len(means) == len(set(means))
def run_empty_dmatrix_reg(client, parameters):
def _check_outputs(out, predictions):
assert isinstance(out['booster'], xgb.dask.Booster)
assert len(out['history']['validation']['rmse']) == 2
assert isinstance(predictions, np.ndarray)
assert predictions.shape[0] == 1
kRows, kCols = 1, 97
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.rand(kRows))
dtrain = xgb.dask.DaskDMatrix(client, X, y)
out = xgb.dask.train(client, parameters,
dtrain=dtrain,
evals=[(dtrain, 'validation')],
num_boost_round=2)
predictions = xgb.dask.predict(client=client, model=out,
data=dtrain).compute()
_check_outputs(out, predictions)
# train has more rows than evals
valid = dtrain
kRows += 1
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.rand(kRows))
dtrain = xgb.dask.DaskDMatrix(client, X, y)
out = xgb.dask.train(client, parameters,
dtrain=dtrain,
evals=[(valid, 'validation')],
num_boost_round=2)
predictions = xgb.dask.predict(client=client, model=out,
data=valid).compute()
_check_outputs(out, predictions)
def run_empty_dmatrix_cls(client, parameters):
n_classes = 4
def _check_outputs(out, predictions):
assert isinstance(out['booster'], xgb.dask.Booster)
assert len(out['history']['validation']['merror']) == 2
assert isinstance(predictions, np.ndarray)
assert predictions.shape[1] == n_classes, predictions.shape
kRows, kCols = 1, 97
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.randint(low=0, high=n_classes, size=kRows))
dtrain = xgb.dask.DaskDMatrix(client, X, y)
parameters['objective'] = 'multi:softprob'
parameters['eval_metric'] = 'merror'
parameters['num_class'] = n_classes
out = xgb.dask.train(client, parameters,
dtrain=dtrain,
evals=[(dtrain, 'validation')],
num_boost_round=2)
predictions = xgb.dask.predict(client=client, model=out,
data=dtrain)
assert predictions.shape[1] == n_classes
predictions = predictions.compute()
_check_outputs(out, predictions)
# train has more rows than evals
valid = dtrain
kRows += 1
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.randint(low=0, high=n_classes, size=kRows))
dtrain = xgb.dask.DaskDMatrix(client, X, y)
out = xgb.dask.train(client, parameters,
dtrain=dtrain,
evals=[(valid, 'validation')],
num_boost_round=2)
predictions = xgb.dask.predict(client=client, model=out,
data=valid).compute()
_check_outputs(out, predictions)
# No test for Exact, as empty DMatrix handling are mostly for distributed
# environment and Exact doesn't support it.
def test_empty_dmatrix_hist():
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
parameters = {'tree_method': 'hist'}
run_empty_dmatrix_reg(client, parameters)
run_empty_dmatrix_cls(client, parameters)
def test_empty_dmatrix_approx():
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
parameters = {'tree_method': 'approx'}
run_empty_dmatrix_reg(client, parameters)
run_empty_dmatrix_cls(client, parameters)
async def run_from_dask_array_asyncio(scheduler_address):
async with Client(scheduler_address, asynchronous=True) as client:
X, y = generate_array()
m = await DaskDMatrix(client, X, y)
output = await xgb.dask.train(client, {}, dtrain=m)
with_m = await xgb.dask.predict(client, output, m)
with_X = await xgb.dask.predict(client, output, X)
inplace = await xgb.dask.inplace_predict(client, output, X)
assert isinstance(with_m, da.Array)
assert isinstance(with_X, da.Array)
assert isinstance(inplace, da.Array)
np.testing.assert_allclose(await client.compute(with_m),
await client.compute(with_X))
np.testing.assert_allclose(await client.compute(with_m),
await client.compute(inplace))
client.shutdown()
return output
async def run_dask_regressor_asyncio(scheduler_address):
async with Client(scheduler_address, asynchronous=True) as client:
X, y = generate_array()
regressor = await xgb.dask.DaskXGBRegressor(verbosity=1,
n_estimators=2)
regressor.set_params(tree_method='hist')
regressor.client = client
await regressor.fit(X, y, eval_set=[(X, y)])
prediction = await regressor.predict(X)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
history = regressor.evals_result()
assert isinstance(prediction, da.Array)
assert isinstance(history, dict)
assert list(history['validation_0'].keys())[0] == 'rmse'
assert len(history['validation_0']['rmse']) == 2
async def run_dask_classifier_asyncio(scheduler_address):
async with Client(scheduler_address, asynchronous=True) as client:
X, y = generate_array()
y = (y * 10).astype(np.int32)
classifier = await xgb.dask.DaskXGBClassifier(
verbosity=1, n_estimators=2, eval_metric='merror')
classifier.client = client
await classifier.fit(X, y, eval_set=[(X, y)])
prediction = await classifier.predict(X)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
history = classifier.evals_result()
assert isinstance(prediction, da.Array)
assert isinstance(history, dict)
assert list(history.keys())[0] == 'validation_0'
assert list(history['validation_0'].keys())[0] == 'merror'
assert len(list(history['validation_0'])) == 1
assert len(history['validation_0']['merror']) == 2
# Test .predict_proba()
probas = await classifier.predict_proba(X)
assert classifier.n_classes_ == 10
assert probas.ndim == 2
assert probas.shape[0] == kRows
assert probas.shape[1] == 10
# Test with dataframe.
X_d = dd.from_dask_array(X)
y_d = dd.from_dask_array(y)
await classifier.fit(X_d, y_d)
assert classifier.n_classes_ == 10
prediction = await classifier.predict(X_d)
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
def test_with_asyncio():
with LocalCluster() as cluster:
with Client(cluster) as client:
address = client.scheduler.address
output = asyncio.run(run_from_dask_array_asyncio(address))
assert isinstance(output['booster'], xgb.Booster)
assert isinstance(output['history'], dict)
asyncio.run(run_dask_regressor_asyncio(address))
asyncio.run(run_dask_classifier_asyncio(address))
def test_predict():
with LocalCluster(n_workers=kWorkers) as cluster:
with Client(cluster) as client:
X, y = generate_array()
dtrain = DaskDMatrix(client, X, y)
booster = xgb.dask.train(
client, {}, dtrain, num_boost_round=2)['booster']
pred = xgb.dask.predict(client, model=booster, data=dtrain)
assert pred.ndim == 1
assert pred.shape[0] == kRows
margin = xgb.dask.predict(client, model=booster, data=dtrain,
output_margin=True)
assert margin.ndim == 1
assert margin.shape[0] == kRows
shap = xgb.dask.predict(client, model=booster, data=dtrain,
pred_contribs=True)
assert shap.ndim == 2
assert shap.shape[0] == kRows
assert shap.shape[1] == kCols + 1
def run_aft_survival(client, dmatrix_t):
# survival doesn't handle empty dataset well.
df = dd.read_csv(os.path.join(tm.PROJECT_ROOT, 'demo', 'data',
'veterans_lung_cancer.csv'))
y_lower_bound = df['Survival_label_lower_bound']
y_upper_bound = df['Survival_label_upper_bound']
X = df.drop(['Survival_label_lower_bound',
'Survival_label_upper_bound'], axis=1)
m = dmatrix_t(client, X, label_lower_bound=y_lower_bound,
label_upper_bound=y_upper_bound)
base_params = {'verbosity': 0,
'objective': 'survival:aft',
'eval_metric': 'aft-nloglik',
'learning_rate': 0.05,
'aft_loss_distribution_scale': 1.20,
'max_depth': 6,
'lambda': 0.01,
'alpha': 0.02}
nloglik_rec = {}
dists = ['normal', 'logistic', 'extreme']
for dist in dists:
params = base_params
params.update({'aft_loss_distribution': dist})
evals_result = {}
out = xgb.dask.train(client, params, m, num_boost_round=100,
evals=[(m, 'train')])
evals_result = out['history']
nloglik_rec[dist] = evals_result['train']['aft-nloglik']
# AFT metric (negative log likelihood) improve monotonically
assert all(p >= q for p, q in zip(nloglik_rec[dist],
nloglik_rec[dist][:1]))
# For this data, normal distribution works the best
assert nloglik_rec['normal'][-1] < 4.9
assert nloglik_rec['logistic'][-1] > 4.9
assert nloglik_rec['extreme'][-1] > 4.9
def test_aft_survival():
with LocalCluster(n_workers=1) as cluster:
with Client(cluster) as client:
run_aft_survival(client, DaskDMatrix)
class TestWithDask:
def run_updater_test(self, client, params, num_rounds, dataset,
tree_method):
params['tree_method'] = tree_method
params = dataset.set_params(params)
# multi class doesn't handle empty dataset well (empty
# means at least 1 worker has data).
if params['objective'] == "multi:softmax":
return
# It doesn't make sense to distribute a completely
# empty dataset.
if dataset.X.shape[0] == 0:
return
chunk = 128
X = da.from_array(dataset.X,
chunks=(chunk, dataset.X.shape[1]))
y = da.from_array(dataset.y, chunks=(chunk,))
if dataset.w is not None:
w = da.from_array(dataset.w, chunks=(chunk,))
else:
w = None
m = xgb.dask.DaskDMatrix(
client, data=X, label=y, weight=w)
history = xgb.dask.train(client, params=params, dtrain=m,
num_boost_round=num_rounds,
evals=[(m, 'train')])['history']
note(history)
history = history['train'][dataset.metric]
assert tm.non_increasing(history)
# Make sure that it's decreasing
assert history[-1] < history[0]
@given(params=hist_parameter_strategy,
num_rounds=strategies.integers(20, 30),
dataset=tm.dataset_strategy)
@settings(deadline=None)
def test_hist(self, params, num_rounds, dataset, client):
self.run_updater_test(client, params, num_rounds, dataset, 'hist')
@given(params=exact_parameter_strategy,
num_rounds=strategies.integers(20, 30),
dataset=tm.dataset_strategy)
@settings(deadline=None)
def test_approx(self, client, params, num_rounds, dataset):
self.run_updater_test(client, params, num_rounds, dataset, 'approx')
def run_quantile(self, name):
if sys.platform.startswith("win"):
pytest.skip("Skipping dask tests on Windows")
exe = None
for possible_path in {'./testxgboost', './build/testxgboost',
'../build/testxgboost',
'../cpu-build/testxgboost'}:
if os.path.exists(possible_path):
exe = possible_path
if exe is None:
return
test = "--gtest_filter=Quantile." + name
def runit(worker_addr, rabit_args):
port = None
# setup environment for running the c++ part.
for arg in rabit_args:
if arg.decode('utf-8').startswith('DMLC_TRACKER_PORT'):
port = arg.decode('utf-8')
port = port.split('=')
env = os.environ.copy()
env[port[0]] = port[1]
return subprocess.run([exe, test], env=env, capture_output=True)
with LocalCluster(n_workers=4) as cluster:
with Client(cluster) as client:
workers = list(xgb.dask._get_client_workers(client).keys())
rabit_args = client.sync(
xgb.dask._get_rabit_args, workers, client)
futures = client.map(runit,
workers,
pure=False,
workers=workers,
rabit_args=rabit_args)
results = client.gather(futures)
for ret in results:
msg = ret.stdout.decode('utf-8')
assert msg.find('1 test from Quantile') != -1, msg
assert ret.returncode == 0, msg
@pytest.mark.skipif(**tm.no_dask())
@pytest.mark.gtest
def test_quantile_basic(self):
self.run_quantile('DistributedBasic')
@pytest.mark.skipif(**tm.no_dask())
@pytest.mark.gtest
def test_quantile(self):
self.run_quantile('Distributed')
@pytest.mark.skipif(**tm.no_dask())
@pytest.mark.gtest
def test_quantile_same_on_all_workers(self):
self.run_quantile('SameOnAllWorkers')