* Change DefaultEvalMetric of classification from error to logloss * Change default binary metric in plugin/example/custom_obj.cc * Set old error metric in python tests * Set old error metric in R tests * Fix missed eval metrics and typos in R tests * Fix setting eval_metric twice in R tests * Add warning for empty eval_metric for classification * Fix Dask tests Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
146 lines
5.2 KiB
C++
Executable File
146 lines
5.2 KiB
C++
Executable File
/*!
|
|
* Copyright 2017-2020 XGBoost contributors
|
|
*/
|
|
#ifndef XGBOOST_OBJECTIVE_REGRESSION_LOSS_ONEAPI_H_
|
|
#define XGBOOST_OBJECTIVE_REGRESSION_LOSS_ONEAPI_H_
|
|
|
|
#include <dmlc/omp.h>
|
|
#include <xgboost/logging.h>
|
|
#include <algorithm>
|
|
|
|
#include "CL/sycl.hpp"
|
|
|
|
namespace xgboost {
|
|
namespace obj {
|
|
|
|
/*!
|
|
* \brief calculate the sigmoid of the input.
|
|
* \param x input parameter
|
|
* \return the transformed value.
|
|
*/
|
|
inline float SigmoidOneAPI(float x) {
|
|
return 1.0f / (1.0f + cl::sycl::exp(-x));
|
|
}
|
|
|
|
// common regressions
|
|
// linear regression
|
|
struct LinearSquareLossOneAPI {
|
|
static bst_float PredTransform(bst_float x) { return x; }
|
|
static bool CheckLabel(bst_float x) { return true; }
|
|
static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
|
|
return predt - label;
|
|
}
|
|
static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
|
|
return 1.0f;
|
|
}
|
|
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
|
|
static const char* LabelErrorMsg() { return ""; }
|
|
static const char* DefaultEvalMetric() { return "rmse"; }
|
|
|
|
static const char* Name() { return "reg:squarederror_oneapi"; }
|
|
};
|
|
|
|
// TODO: DPC++ does not fully support std math inside offloaded kernels
|
|
struct SquaredLogErrorOneAPI {
|
|
static bst_float PredTransform(bst_float x) { return x; }
|
|
static bool CheckLabel(bst_float label) {
|
|
return label > -1;
|
|
}
|
|
static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
|
|
predt = std::max(predt, (bst_float)(-1 + 1e-6)); // ensure correct value for log1p
|
|
return (cl::sycl::log1p(predt) - cl::sycl::log1p(label)) / (predt + 1);
|
|
}
|
|
static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
|
|
predt = std::max(predt, (bst_float)(-1 + 1e-6));
|
|
float res = (-cl::sycl::log1p(predt) + cl::sycl::log1p(label) + 1) /
|
|
cl::sycl::pow(predt + 1, (bst_float)2);
|
|
res = std::max(res, (bst_float)1e-6f);
|
|
return res;
|
|
}
|
|
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
|
|
static const char* LabelErrorMsg() {
|
|
return "label must be greater than -1 for rmsle so that log(label + 1) can be valid.";
|
|
}
|
|
static const char* DefaultEvalMetric() { return "rmsle"; }
|
|
|
|
static const char* Name() { return "reg:squaredlogerror_oneapi"; }
|
|
};
|
|
|
|
// logistic loss for probability regression task
|
|
struct LogisticRegressionOneAPI {
|
|
// duplication is necessary, as __device__ specifier
|
|
// cannot be made conditional on template parameter
|
|
static bst_float PredTransform(bst_float x) { return SigmoidOneAPI(x); }
|
|
static bool CheckLabel(bst_float x) { return x >= 0.0f && x <= 1.0f; }
|
|
static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
|
|
return predt - label;
|
|
}
|
|
static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
|
|
const bst_float eps = 1e-16f;
|
|
return std::max(predt * (1.0f - predt), eps);
|
|
}
|
|
template <typename T>
|
|
static T PredTransform(T x) { return SigmoidOneAPI(x); }
|
|
template <typename T>
|
|
static T FirstOrderGradient(T predt, T label) { return predt - label; }
|
|
template <typename T>
|
|
static T SecondOrderGradient(T predt, T label) {
|
|
const T eps = T(1e-16f);
|
|
return std::max(predt * (T(1.0f) - predt), eps);
|
|
}
|
|
static bst_float ProbToMargin(bst_float base_score) {
|
|
CHECK(base_score > 0.0f && base_score < 1.0f)
|
|
<< "base_score must be in (0,1) for logistic loss, got: " << base_score;
|
|
return -logf(1.0f / base_score - 1.0f);
|
|
}
|
|
static const char* LabelErrorMsg() {
|
|
return "label must be in [0,1] for logistic regression";
|
|
}
|
|
static const char* DefaultEvalMetric() { return "rmse"; }
|
|
|
|
static const char* Name() { return "reg:logistic_oneapi"; }
|
|
};
|
|
|
|
// logistic loss for binary classification task
|
|
struct LogisticClassificationOneAPI : public LogisticRegressionOneAPI {
|
|
static const char* DefaultEvalMetric() { return "logloss"; }
|
|
static const char* Name() { return "binary:logistic_oneapi"; }
|
|
};
|
|
|
|
// logistic loss, but predict un-transformed margin
|
|
struct LogisticRawOneAPI : public LogisticRegressionOneAPI {
|
|
// duplication is necessary, as __device__ specifier
|
|
// cannot be made conditional on template parameter
|
|
static bst_float PredTransform(bst_float x) { return x; }
|
|
static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
|
|
predt = SigmoidOneAPI(predt);
|
|
return predt - label;
|
|
}
|
|
static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
|
|
const bst_float eps = 1e-16f;
|
|
predt = SigmoidOneAPI(predt);
|
|
return std::max(predt * (1.0f - predt), eps);
|
|
}
|
|
template <typename T>
|
|
static T PredTransform(T x) { return x; }
|
|
template <typename T>
|
|
static T FirstOrderGradient(T predt, T label) {
|
|
predt = SigmoidOneAPI(predt);
|
|
return predt - label;
|
|
}
|
|
template <typename T>
|
|
static T SecondOrderGradient(T predt, T label) {
|
|
const T eps = T(1e-16f);
|
|
predt = SigmoidOneAPI(predt);
|
|
return std::max(predt * (T(1.0f) - predt), eps);
|
|
}
|
|
static const char* DefaultEvalMetric() { return "auc"; }
|
|
|
|
static const char* Name() { return "binary:logitraw_oneapi"; }
|
|
};
|
|
|
|
} // namespace obj
|
|
} // namespace xgboost
|
|
|
|
#endif // XGBOOST_OBJECTIVE_REGRESSION_LOSS_ONEAPI_H_
|