xgboost/tests/python/test_linear.py
Jiaming Yuan 29a1356669
Deprecate reg:linear' in favor of reg:squarederror'. (#4267)
* Deprecate `reg:linear' in favor of `reg:squarederror'.
* Replace the use of `reg:linear'.
* Replace the use of `silent`.
2019-03-17 17:55:04 +08:00

90 lines
3.3 KiB
Python

from __future__ import print_function
import numpy as np
import testing as tm
import unittest
import pytest
import xgboost as xgb
try:
from sklearn.linear_model import ElasticNet
from sklearn.preprocessing import scale
from regression_test_utilities import run_suite, parameter_combinations
except ImportError:
None
def is_float(s):
try:
float(s)
return 1
except ValueError:
return 0
def xgb_get_weights(bst):
return np.array([float(s) for s in bst.get_dump()[0].split() if
is_float(s)])
def assert_regression_result(results, tol):
regression_results = [r for r in results if
r["param"]["objective"] == "reg:squarederror"]
for res in regression_results:
X = scale(res["dataset"].X,
with_mean=isinstance(res["dataset"].X, np.ndarray))
y = res["dataset"].y
reg_alpha = res["param"]["alpha"]
reg_lambda = res["param"]["lambda"]
pred = res["bst"].predict(xgb.DMatrix(X))
weights = xgb_get_weights(res["bst"])[1:]
enet = ElasticNet(alpha=reg_alpha + reg_lambda,
l1_ratio=reg_alpha / (reg_alpha + reg_lambda))
enet.fit(X, y)
enet_pred = enet.predict(X)
assert np.isclose(weights, enet.coef_, rtol=tol,
atol=tol).all(), (weights, enet.coef_)
assert np.isclose(enet_pred, pred, rtol=tol, atol=tol).all(), (
res["dataset"].name, enet_pred[:5], pred[:5])
# TODO: More robust classification tests
def assert_classification_result(results):
classification_results = [r for r in results if
r["param"]["objective"] != "reg:squarederror"]
for res in classification_results:
# Check accuracy is reasonable
assert res["eval"][-1] < 0.5, (res["dataset"].name, res["eval"][-1])
class TestLinear(unittest.TestCase):
datasets = ["Boston", "Digits", "Cancer", "Sparse regression",
"Boston External Memory"]
@pytest.mark.skipif(**tm.no_sklearn())
def test_coordinate(self):
variable_param = {'booster': ['gblinear'], 'updater':
['coord_descent'], 'eta': [0.5], 'top_k':
[10], 'tolerance': [1e-5], 'nthread': [2],
'alpha': [.005, .1], 'lambda': [.005],
'feature_selector': ['cyclic', 'shuffle',
'greedy', 'thrifty']}
for param in parameter_combinations(variable_param):
results = run_suite(param, 150, self.datasets, scale_features=True)
assert_regression_result(results, 1e-2)
assert_classification_result(results)
@pytest.mark.skipif(**tm.no_sklearn())
def test_shotgun(self):
variable_param = {'booster': ['gblinear'], 'updater':
['shotgun'], 'eta': [0.5], 'top_k': [10],
'tolerance': [1e-5], 'nthread': [2],
'alpha': [.005, .1], 'lambda': [.005],
'feature_selector': ['cyclic', 'shuffle']}
for param in parameter_combinations(variable_param):
results = run_suite(param, 200, self.datasets, True)
assert_regression_result(results, 1e-2)
assert_classification_result(results)