105 lines
3.6 KiB
Python
105 lines
3.6 KiB
Python
from __future__ import print_function
|
|
|
|
import sys
|
|
import time
|
|
import pytest
|
|
|
|
sys.path.append("../../tests/python")
|
|
import xgboost as xgb
|
|
import numpy as np
|
|
import unittest
|
|
|
|
|
|
def eprint(*args, **kwargs):
|
|
print(*args, file=sys.stderr, **kwargs)
|
|
sys.stderr.flush()
|
|
print(*args, file=sys.stdout, **kwargs)
|
|
sys.stdout.flush()
|
|
|
|
|
|
rng = np.random.RandomState(1994)
|
|
|
|
# "realistic" size based upon http://stat-computing.org/dataexpo/2009/
|
|
# , which has been processed to one-hot encode categoricalsxsy
|
|
cols = 31
|
|
# reduced to fit onto 1 gpu but still be large
|
|
rows3 = 5000 # small
|
|
rows2 = 4360032 # medium
|
|
rows1 = 42360032 # large
|
|
# rows1 = 152360032 # can do this for multi-gpu test (very large)
|
|
rowslist = [rows1, rows2, rows3]
|
|
|
|
|
|
@pytest.mark.slow
|
|
class TestGPU(unittest.TestCase):
|
|
def test_large(self):
|
|
for rows in rowslist:
|
|
eprint("Creating train data rows=%d cols=%d" % (rows, cols))
|
|
tmp = time.time()
|
|
np.random.seed(7)
|
|
X = np.random.rand(rows, cols)
|
|
y = np.random.rand(rows)
|
|
print("Time to Create Data: %r" % (time.time() - tmp))
|
|
|
|
eprint("Starting DMatrix(X,y)")
|
|
tmp = time.time()
|
|
ag_dtrain = xgb.DMatrix(X, y, nthread=40)
|
|
print("Time to DMatrix: %r" % (time.time() - tmp))
|
|
|
|
max_depth = 6
|
|
max_bin = 1024
|
|
|
|
# regression test --- hist must be same as exact on
|
|
# all-categorial data
|
|
ag_paramb = {'max_depth': max_depth,
|
|
'tree_method': 'hist',
|
|
'nthread': 0,
|
|
'eta': 1,
|
|
'silent': 0,
|
|
'debug_verbose': 5,
|
|
'objective': 'binary:logistic',
|
|
'eval_metric': 'auc'}
|
|
ag_param2 = {'max_depth': max_depth,
|
|
'tree_method': 'gpu_hist',
|
|
'nthread': 0,
|
|
'eta': 1,
|
|
'silent': 0,
|
|
'debug_verbose': 5,
|
|
'n_gpus': 1,
|
|
'objective': 'binary:logistic',
|
|
'max_bin': max_bin,
|
|
'eval_metric': 'auc'}
|
|
ag_param3 = {'max_depth': max_depth,
|
|
'tree_method': 'gpu_hist',
|
|
'nthread': 0,
|
|
'eta': 1,
|
|
'silent': 0,
|
|
'debug_verbose': 5,
|
|
'n_gpus': -1,
|
|
'objective': 'binary:logistic',
|
|
'max_bin': max_bin,
|
|
'eval_metric': 'auc'}
|
|
ag_res = {}
|
|
ag_resb = {}
|
|
ag_res2 = {}
|
|
ag_res3 = {}
|
|
|
|
num_rounds = 1
|
|
tmp = time.time()
|
|
# eprint("hist updater")
|
|
# xgb.train(ag_paramb, ag_dtrain, num_rounds, [(ag_dtrain, 'train')],
|
|
# evals_result=ag_resb)
|
|
# print("Time to Train: %s seconds" % (str(time.time() - tmp)))
|
|
|
|
tmp = time.time()
|
|
eprint("gpu_hist updater 1 gpu")
|
|
xgb.train(ag_param2, ag_dtrain, num_rounds, [(ag_dtrain, 'train')],
|
|
evals_result=ag_res2)
|
|
print("Time to Train: %s seconds" % (str(time.time() - tmp)))
|
|
|
|
tmp = time.time()
|
|
eprint("gpu_hist updater all gpus")
|
|
xgb.train(ag_param3, ag_dtrain, num_rounds, [(ag_dtrain, 'train')],
|
|
evals_result=ag_res3)
|
|
print("Time to Train: %s seconds" % (str(time.time() - tmp)))
|