1116 lines
44 KiB
Python
1116 lines
44 KiB
Python
import glob
|
|
import logging
|
|
import random
|
|
import sys
|
|
import uuid
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import testing as tm
|
|
|
|
import xgboost as xgb
|
|
|
|
if tm.no_spark()["condition"]:
|
|
pytest.skip(msg=tm.no_spark()["reason"], allow_module_level=True)
|
|
if sys.platform.startswith("win") or sys.platform.startswith("darwin"):
|
|
pytest.skip("Skipping PySpark tests on Windows", allow_module_level=True)
|
|
|
|
from pyspark.ml import Pipeline, PipelineModel
|
|
from pyspark.ml.evaluation import BinaryClassificationEvaluator
|
|
from pyspark.ml.feature import VectorAssembler
|
|
from pyspark.ml.functions import vector_to_array
|
|
from pyspark.ml.linalg import Vectors
|
|
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
|
|
from pyspark.sql import functions as spark_sql_func
|
|
from xgboost.spark import (
|
|
SparkXGBClassifier,
|
|
SparkXGBClassifierModel,
|
|
SparkXGBRanker,
|
|
SparkXGBRegressor,
|
|
SparkXGBRegressorModel,
|
|
)
|
|
from xgboost.spark.core import _non_booster_params
|
|
|
|
from xgboost import XGBClassifier, XGBModel, XGBRegressor
|
|
|
|
from .utils import SparkTestCase
|
|
|
|
logging.getLogger("py4j").setLevel(logging.INFO)
|
|
|
|
pytestmark = pytest.mark.timeout(60)
|
|
|
|
|
|
class XgboostLocalTest(SparkTestCase):
|
|
def setUp(self):
|
|
logging.getLogger().setLevel("INFO")
|
|
random.seed(2020)
|
|
|
|
# The following code use xgboost python library to train xgb model and predict.
|
|
#
|
|
# >>> import numpy as np
|
|
# >>> import xgboost
|
|
# >>> X = np.array([[1.0, 2.0, 3.0], [0.0, 1.0, 5.5]])
|
|
# >>> y = np.array([0, 1])
|
|
# >>> reg1 = xgboost.XGBRegressor()
|
|
# >>> reg1.fit(X, y)
|
|
# >>> reg1.predict(X)
|
|
# array([8.8375784e-04, 9.9911624e-01], dtype=float32)
|
|
# >>> def custom_lr(boosting_round):
|
|
# ... return 1.0 / (boosting_round + 1)
|
|
# ...
|
|
# >>> reg1.fit(X, y, callbacks=[xgboost.callback.LearningRateScheduler(custom_lr)])
|
|
# >>> reg1.predict(X)
|
|
# array([0.02406844, 0.9759315 ], dtype=float32)
|
|
# >>> reg2 = xgboost.XGBRegressor(max_depth=5, n_estimators=10)
|
|
# >>> reg2.fit(X, y)
|
|
# >>> reg2.predict(X, ntree_limit=5)
|
|
# array([0.22185266, 0.77814734], dtype=float32)
|
|
self.reg_params = {
|
|
"max_depth": 5,
|
|
"n_estimators": 10,
|
|
"ntree_limit": 5,
|
|
"max_bin": 9,
|
|
}
|
|
self.reg_df_train = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), 0),
|
|
(Vectors.sparse(3, {1: 1.0, 2: 5.5}), 1),
|
|
],
|
|
["features", "label"],
|
|
)
|
|
self.reg_df_test = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), 0.0, 0.2219, 0.02406),
|
|
(Vectors.sparse(3, {1: 1.0, 2: 5.5}), 1.0, 0.7781, 0.9759),
|
|
],
|
|
[
|
|
"features",
|
|
"expected_prediction",
|
|
"expected_prediction_with_params",
|
|
"expected_prediction_with_callbacks",
|
|
],
|
|
)
|
|
|
|
# >>> X = np.array([[1.0, 2.0, 3.0], [0.0, 1.0, 5.5]])
|
|
# >>> y = np.array([0, 1])
|
|
# >>> cl1 = xgboost.XGBClassifier()
|
|
# >>> cl1.fit(X, y)
|
|
# >>> cl1.predict(X)
|
|
# array([0, 0])
|
|
# >>> cl1.predict_proba(X)
|
|
# array([[0.5, 0.5],
|
|
# [0.5, 0.5]], dtype=float32)
|
|
# >>> cl2 = xgboost.XGBClassifier(max_depth=5, n_estimators=10, scale_pos_weight=4)
|
|
# >>> cl2.fit(X, y)
|
|
# >>> cl2.predict(X)
|
|
# array([1, 1])
|
|
# >>> cl2.predict_proba(X)
|
|
# array([[0.27574146, 0.72425854 ],
|
|
# [0.27574146, 0.72425854 ]], dtype=float32)
|
|
self.cls_params = {"max_depth": 5, "n_estimators": 10, "scale_pos_weight": 4}
|
|
|
|
cls_df_train_data = [
|
|
(Vectors.dense(1.0, 2.0, 3.0), 0),
|
|
(Vectors.sparse(3, {1: 1.0, 2: 5.5}), 1),
|
|
]
|
|
self.cls_df_train = self.session.createDataFrame(
|
|
cls_df_train_data, ["features", "label"]
|
|
)
|
|
self.cls_df_train_large = self.session.createDataFrame(
|
|
cls_df_train_data * 100, ["features", "label"]
|
|
)
|
|
self.cls_df_test = self.session.createDataFrame(
|
|
[
|
|
(
|
|
Vectors.dense(1.0, 2.0, 3.0),
|
|
0,
|
|
[0.5, 0.5],
|
|
1,
|
|
[0.27574146, 0.72425854],
|
|
),
|
|
(
|
|
Vectors.sparse(3, {1: 1.0, 2: 5.5}),
|
|
0,
|
|
[0.5, 0.5],
|
|
1,
|
|
[0.27574146, 0.72425854],
|
|
),
|
|
],
|
|
[
|
|
"features",
|
|
"expected_prediction",
|
|
"expected_probability",
|
|
"expected_prediction_with_params",
|
|
"expected_probability_with_params",
|
|
],
|
|
)
|
|
|
|
# kwargs test (using the above data, train, we get the same results)
|
|
self.cls_params_kwargs = {"tree_method": "approx", "sketch_eps": 0.03}
|
|
|
|
# >>> X = np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 4.0], [0.0, 1.0, 5.5], [-1.0, -2.0, 1.0]])
|
|
# >>> y = np.array([0, 0, 1, 2])
|
|
# >>> cl = xgboost.XGBClassifier()
|
|
# >>> cl.fit(X, y)
|
|
# >>> cl.predict_proba(np.array([[1.0, 2.0, 3.0]]))
|
|
# array([[0.5374299 , 0.23128504, 0.23128504]], dtype=float32)
|
|
multi_cls_df_train_data = [
|
|
(Vectors.dense(1.0, 2.0, 3.0), 0),
|
|
(Vectors.dense(1.0, 2.0, 4.0), 0),
|
|
(Vectors.sparse(3, {1: 1.0, 2: 5.5}), 1),
|
|
(Vectors.dense(-1.0, -2.0, 1.0), 2),
|
|
]
|
|
self.multi_cls_df_train = self.session.createDataFrame(
|
|
multi_cls_df_train_data, ["features", "label"]
|
|
)
|
|
self.multi_cls_df_train_large = self.session.createDataFrame(
|
|
multi_cls_df_train_data * 100, ["features", "label"]
|
|
)
|
|
self.multi_cls_df_test = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), [0.5374, 0.2312, 0.2312]),
|
|
],
|
|
["features", "expected_probability"],
|
|
)
|
|
|
|
# Test regressor with weight and eval set
|
|
# >>> import numpy as np
|
|
# >>> import xgboost
|
|
# >>> X = np.array([[1.0, 2.0, 3.0], [0.0, 1.0, 5.5], [4.0, 5.0, 6.0], [0.0, 6.0, 7.5]])
|
|
# >>> w = np.array([1.0, 2.0, 1.0, 2.0])
|
|
# >>> y = np.array([0, 1, 2, 3])
|
|
# >>> reg1 = xgboost.XGBRegressor()
|
|
# >>> reg1.fit(X, y, sample_weight=w)
|
|
# >>> reg1.predict(X)
|
|
# >>> array([1.0679445e-03, 1.0000550e+00, ...
|
|
# >>> X_train = np.array([[1.0, 2.0, 3.0], [0.0, 1.0, 5.5]])
|
|
# >>> X_val = np.array([[4.0, 5.0, 6.0], [0.0, 6.0, 7.5]])
|
|
# >>> y_train = np.array([0, 1])
|
|
# >>> y_val = np.array([2, 3])
|
|
# >>> w_train = np.array([1.0, 2.0])
|
|
# >>> w_val = np.array([1.0, 2.0])
|
|
# >>> reg2 = xgboost.XGBRegressor()
|
|
# >>> reg2.fit(X_train, y_train, eval_set=[(X_val, y_val)],
|
|
# >>> early_stopping_rounds=1, eval_metric='rmse')
|
|
# >>> reg2.predict(X)
|
|
# >>> array([8.8370638e-04, 9.9911624e-01, ...
|
|
# >>> reg2.best_score
|
|
# 2.0000002682208837
|
|
# >>> reg3 = xgboost.XGBRegressor()
|
|
# >>> reg3.fit(X_train, y_train, sample_weight=w_train, eval_set=[(X_val, y_val)],
|
|
# >>> sample_weight_eval_set=[w_val],
|
|
# >>> early_stopping_rounds=1, eval_metric='rmse')
|
|
# >>> reg3.predict(X)
|
|
# >>> array([0.03155671, 0.98874104,...
|
|
# >>> reg3.best_score
|
|
# 1.9970891552124017
|
|
self.reg_df_train_with_eval_weight = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), 0, False, 1.0),
|
|
(Vectors.sparse(3, {1: 1.0, 2: 5.5}), 1, False, 2.0),
|
|
(Vectors.dense(4.0, 5.0, 6.0), 2, True, 1.0),
|
|
(Vectors.sparse(3, {1: 6.0, 2: 7.5}), 3, True, 2.0),
|
|
],
|
|
["features", "label", "isVal", "weight"],
|
|
)
|
|
self.reg_params_with_eval = {
|
|
"validation_indicator_col": "isVal",
|
|
"early_stopping_rounds": 1,
|
|
"eval_metric": "rmse",
|
|
}
|
|
self.reg_df_test_with_eval_weight = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), 0.001068, 0.00088, 0.03155),
|
|
(Vectors.sparse(3, {1: 1.0, 2: 5.5}), 1.000055, 0.9991, 0.9887),
|
|
],
|
|
[
|
|
"features",
|
|
"expected_prediction_with_weight",
|
|
"expected_prediction_with_eval",
|
|
"expected_prediction_with_weight_and_eval",
|
|
],
|
|
)
|
|
self.reg_with_eval_best_score = 2.0
|
|
self.reg_with_eval_and_weight_best_score = 1.997
|
|
|
|
# Test classifier with weight and eval set
|
|
# >>> import numpy as np
|
|
# >>> import xgboost
|
|
# >>> X = np.array([[1.0, 2.0, 3.0], [0.0, 1.0, 5.5], [4.0, 5.0, 6.0], [0.0, 6.0, 7.5]])
|
|
# >>> w = np.array([1.0, 2.0, 1.0, 2.0])
|
|
# >>> y = np.array([0, 1, 0, 1])
|
|
# >>> cls1 = xgboost.XGBClassifier()
|
|
# >>> cls1.fit(X, y, sample_weight=w)
|
|
# >>> cls1.predict_proba(X)
|
|
# array([[0.3333333, 0.6666667],...
|
|
# >>> X_train = np.array([[1.0, 2.0, 3.0], [0.0, 1.0, 5.5]])
|
|
# >>> X_val = np.array([[4.0, 5.0, 6.0], [0.0, 6.0, 7.5]])
|
|
# >>> y_train = np.array([0, 1])
|
|
# >>> y_val = np.array([0, 1])
|
|
# >>> w_train = np.array([1.0, 2.0])
|
|
# >>> w_val = np.array([1.0, 2.0])
|
|
# >>> cls2 = xgboost.XGBClassifier()
|
|
# >>> cls2.fit(X_train, y_train, eval_set=[(X_val, y_val)],
|
|
# >>> early_stopping_rounds=1, eval_metric='logloss')
|
|
# >>> cls2.predict_proba(X)
|
|
# array([[0.5, 0.5],...
|
|
# >>> cls2.best_score
|
|
# 0.6931
|
|
# >>> cls3 = xgboost.XGBClassifier()
|
|
# >>> cls3.fit(X_train, y_train, sample_weight=w_train, eval_set=[(X_val, y_val)],
|
|
# >>> sample_weight_eval_set=[w_val],
|
|
# >>> early_stopping_rounds=1, eval_metric='logloss')
|
|
# >>> cls3.predict_proba(X)
|
|
# array([[0.3344962, 0.6655038],...
|
|
# >>> cls3.best_score
|
|
# 0.6365
|
|
self.cls_df_train_with_eval_weight = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), 0, False, 1.0),
|
|
(Vectors.sparse(3, {1: 1.0, 2: 5.5}), 1, False, 2.0),
|
|
(Vectors.dense(4.0, 5.0, 6.0), 0, True, 1.0),
|
|
(Vectors.sparse(3, {1: 6.0, 2: 7.5}), 1, True, 2.0),
|
|
],
|
|
["features", "label", "isVal", "weight"],
|
|
)
|
|
self.cls_params_with_eval = {
|
|
"validation_indicator_col": "isVal",
|
|
"early_stopping_rounds": 1,
|
|
"eval_metric": "logloss",
|
|
}
|
|
self.cls_df_test_with_eval_weight = self.session.createDataFrame(
|
|
[
|
|
(
|
|
Vectors.dense(1.0, 2.0, 3.0),
|
|
[0.3333, 0.6666],
|
|
[0.5, 0.5],
|
|
[0.3097, 0.6903],
|
|
),
|
|
],
|
|
[
|
|
"features",
|
|
"expected_prob_with_weight",
|
|
"expected_prob_with_eval",
|
|
"expected_prob_with_weight_and_eval",
|
|
],
|
|
)
|
|
self.cls_with_eval_best_score = 0.6931
|
|
self.cls_with_eval_and_weight_best_score = 0.6378
|
|
|
|
# Test classifier with both base margin and without
|
|
# >>> import numpy as np
|
|
# >>> import xgboost
|
|
# >>> X = np.array([[1.0, 2.0, 3.0], [0.0, 1.0, 5.5], [4.0, 5.0, 6.0], [0.0, 6.0, 7.5]])
|
|
# >>> w = np.array([1.0, 2.0, 1.0, 2.0])
|
|
# >>> y = np.array([0, 1, 0, 1])
|
|
# >>> base_margin = np.array([1,0,0,1])
|
|
#
|
|
# This is without the base margin
|
|
# >>> cls1 = xgboost.XGBClassifier()
|
|
# >>> cls1.fit(X, y, sample_weight=w)
|
|
# >>> cls1.predict_proba(np.array([[1.0, 2.0, 3.0]]))
|
|
# array([[0.3333333, 0.6666667]], dtype=float32)
|
|
# >>> cls1.predict(np.array([[1.0, 2.0, 3.0]]))
|
|
# array([1])
|
|
#
|
|
# This is with the same base margin for predict
|
|
# >>> cls2 = xgboost.XGBClassifier()
|
|
# >>> cls2.fit(X, y, sample_weight=w, base_margin=base_margin)
|
|
# >>> cls2.predict_proba(np.array([[1.0, 2.0, 3.0]]), base_margin=[0])
|
|
# array([[0.44142532, 0.5585747 ]], dtype=float32)
|
|
# >>> cls2.predict(np.array([[1.0, 2.0, 3.0]]), base_margin=[0])
|
|
# array([1])
|
|
#
|
|
# This is with a different base margin for predict
|
|
# # >>> cls2 = xgboost.XGBClassifier()
|
|
# >>> cls2.fit(X, y, sample_weight=w, base_margin=base_margin)
|
|
# >>> cls2.predict_proba(np.array([[1.0, 2.0, 3.0]]), base_margin=[1])
|
|
# array([[0.2252, 0.7747 ]], dtype=float32)
|
|
# >>> cls2.predict(np.array([[1.0, 2.0, 3.0]]), base_margin=[0])
|
|
# array([1])
|
|
self.cls_df_train_without_base_margin = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), 0, 1.0),
|
|
(Vectors.sparse(3, {1: 1.0, 2: 5.5}), 1, 2.0),
|
|
(Vectors.dense(4.0, 5.0, 6.0), 0, 1.0),
|
|
(Vectors.sparse(3, {1: 6.0, 2: 7.5}), 1, 2.0),
|
|
],
|
|
["features", "label", "weight"],
|
|
)
|
|
self.cls_df_test_without_base_margin = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), [0.3333, 0.6666], 1),
|
|
],
|
|
[
|
|
"features",
|
|
"expected_prob_without_base_margin",
|
|
"expected_prediction_without_base_margin",
|
|
],
|
|
)
|
|
|
|
self.cls_df_train_with_same_base_margin = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), 0, 1.0, 1),
|
|
(Vectors.sparse(3, {1: 1.0, 2: 5.5}), 1, 2.0, 0),
|
|
(Vectors.dense(4.0, 5.0, 6.0), 0, 1.0, 0),
|
|
(Vectors.sparse(3, {1: 6.0, 2: 7.5}), 1, 2.0, 1),
|
|
],
|
|
["features", "label", "weight", "base_margin"],
|
|
)
|
|
self.cls_df_test_with_same_base_margin = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), 0, [0.4415, 0.5585], 1),
|
|
],
|
|
[
|
|
"features",
|
|
"base_margin",
|
|
"expected_prob_with_base_margin",
|
|
"expected_prediction_with_base_margin",
|
|
],
|
|
)
|
|
|
|
self.cls_df_train_with_different_base_margin = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), 0, 1.0, 1),
|
|
(Vectors.sparse(3, {1: 1.0, 2: 5.5}), 1, 2.0, 0),
|
|
(Vectors.dense(4.0, 5.0, 6.0), 0, 1.0, 0),
|
|
(Vectors.sparse(3, {1: 6.0, 2: 7.5}), 1, 2.0, 1),
|
|
],
|
|
["features", "label", "weight", "base_margin"],
|
|
)
|
|
self.cls_df_test_with_different_base_margin = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), 1, [0.2252, 0.7747], 1),
|
|
],
|
|
[
|
|
"features",
|
|
"base_margin",
|
|
"expected_prob_with_base_margin",
|
|
"expected_prediction_with_base_margin",
|
|
],
|
|
)
|
|
self.ranker_df_train = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 2.0, 3.0), 0, 0),
|
|
(Vectors.dense(4.0, 5.0, 6.0), 1, 0),
|
|
(Vectors.dense(9.0, 4.0, 8.0), 2, 0),
|
|
(Vectors.sparse(3, {1: 1.0, 2: 5.5}), 0, 1),
|
|
(Vectors.sparse(3, {1: 6.0, 2: 7.5}), 1, 1),
|
|
(Vectors.sparse(3, {1: 8.0, 2: 9.5}), 2, 1),
|
|
],
|
|
["features", "label", "qid"],
|
|
)
|
|
self.ranker_df_test = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.5, 2.0, 3.0), 0, -1.87988),
|
|
(Vectors.dense(4.5, 5.0, 6.0), 0, 0.29556),
|
|
(Vectors.dense(9.0, 4.5, 8.0), 0, 2.36570),
|
|
(Vectors.sparse(3, {1: 1.0, 2: 6.0}), 1, -1.87988),
|
|
(Vectors.sparse(3, {1: 6.0, 2: 7.0}), 1, -0.30612),
|
|
(Vectors.sparse(3, {1: 8.0, 2: 10.5}), 1, 2.44826),
|
|
],
|
|
["features", "qid", "expected_prediction"],
|
|
)
|
|
|
|
self.reg_df_sparse_train = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 0.0, 3.0, 0.0, 0.0), 0),
|
|
(Vectors.sparse(5, {1: 1.0, 3: 5.5}), 1),
|
|
(Vectors.sparse(5, {4: -3.0}), 2),
|
|
]
|
|
* 10,
|
|
["features", "label"],
|
|
)
|
|
|
|
self.cls_df_sparse_train = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(1.0, 0.0, 3.0, 0.0, 0.0), 0),
|
|
(Vectors.sparse(5, {1: 1.0, 3: 5.5}), 1),
|
|
(Vectors.sparse(5, {4: -3.0}), 0),
|
|
]
|
|
* 10,
|
|
["features", "label"],
|
|
)
|
|
|
|
def get_local_tmp_dir(self):
|
|
return self.tempdir + str(uuid.uuid4())
|
|
|
|
def assert_model_compatible(self, model: XGBModel, model_path: str):
|
|
bst = xgb.Booster()
|
|
path = glob.glob(f"{model_path}/**/model/part-00000", recursive=True)[0]
|
|
bst.load_model(path)
|
|
self.assertEqual(model.get_booster().save_raw("json"), bst.save_raw("json"))
|
|
|
|
def test_regressor_params_basic(self):
|
|
py_reg = SparkXGBRegressor()
|
|
self.assertTrue(hasattr(py_reg, "n_estimators"))
|
|
self.assertEqual(py_reg.n_estimators.parent, py_reg.uid)
|
|
self.assertFalse(hasattr(py_reg, "gpu_id"))
|
|
self.assertEqual(py_reg.getOrDefault(py_reg.n_estimators), 100)
|
|
self.assertEqual(py_reg.getOrDefault(py_reg.objective), "reg:squarederror")
|
|
py_reg2 = SparkXGBRegressor(n_estimators=200)
|
|
self.assertEqual(py_reg2.getOrDefault(py_reg2.n_estimators), 200)
|
|
py_reg3 = py_reg2.copy({py_reg2.max_depth: 10})
|
|
self.assertEqual(py_reg3.getOrDefault(py_reg3.n_estimators), 200)
|
|
self.assertEqual(py_reg3.getOrDefault(py_reg3.max_depth), 10)
|
|
|
|
def test_classifier_params_basic(self):
|
|
py_cls = SparkXGBClassifier()
|
|
self.assertTrue(hasattr(py_cls, "n_estimators"))
|
|
self.assertEqual(py_cls.n_estimators.parent, py_cls.uid)
|
|
self.assertFalse(hasattr(py_cls, "gpu_id"))
|
|
self.assertEqual(py_cls.getOrDefault(py_cls.n_estimators), 100)
|
|
self.assertEqual(py_cls.getOrDefault(py_cls.objective), None)
|
|
py_cls2 = SparkXGBClassifier(n_estimators=200)
|
|
self.assertEqual(py_cls2.getOrDefault(py_cls2.n_estimators), 200)
|
|
py_cls3 = py_cls2.copy({py_cls2.max_depth: 10})
|
|
self.assertEqual(py_cls3.getOrDefault(py_cls3.n_estimators), 200)
|
|
self.assertEqual(py_cls3.getOrDefault(py_cls3.max_depth), 10)
|
|
|
|
def test_classifier_kwargs_basic(self):
|
|
py_cls = SparkXGBClassifier(**self.cls_params_kwargs)
|
|
self.assertTrue(hasattr(py_cls, "n_estimators"))
|
|
self.assertEqual(py_cls.n_estimators.parent, py_cls.uid)
|
|
self.assertFalse(hasattr(py_cls, "gpu_id"))
|
|
self.assertTrue(hasattr(py_cls, "arbitrary_params_dict"))
|
|
expected_kwargs = {"sketch_eps": 0.03}
|
|
self.assertEqual(
|
|
py_cls.getOrDefault(py_cls.arbitrary_params_dict), expected_kwargs
|
|
)
|
|
|
|
# Testing overwritten params
|
|
py_cls = SparkXGBClassifier()
|
|
py_cls.setParams(x=1, y=2)
|
|
py_cls.setParams(y=3, z=4)
|
|
xgb_params = py_cls._gen_xgb_params_dict()
|
|
assert xgb_params["x"] == 1
|
|
assert xgb_params["y"] == 3
|
|
assert xgb_params["z"] == 4
|
|
|
|
def test_param_alias(self):
|
|
py_cls = SparkXGBClassifier(features_col="f1", label_col="l1")
|
|
self.assertEqual(py_cls.getOrDefault(py_cls.featuresCol), "f1")
|
|
self.assertEqual(py_cls.getOrDefault(py_cls.labelCol), "l1")
|
|
with pytest.raises(
|
|
ValueError, match="Please use param name features_col instead"
|
|
):
|
|
SparkXGBClassifier(featuresCol="f1")
|
|
|
|
def test_gpu_param_setting(self):
|
|
py_cls = SparkXGBClassifier(use_gpu=True)
|
|
train_params = py_cls._get_distributed_train_params(self.cls_df_train)
|
|
assert train_params["tree_method"] == "gpu_hist"
|
|
|
|
@staticmethod
|
|
def test_param_value_converter():
|
|
py_cls = SparkXGBClassifier(missing=np.float64(1.0), sketch_eps=np.float64(0.3))
|
|
# don't check by isintance(v, float) because for numpy scalar it will also return True
|
|
assert py_cls.getOrDefault(py_cls.missing).__class__.__name__ == "float"
|
|
assert (
|
|
py_cls.getOrDefault(py_cls.arbitrary_params_dict)[
|
|
"sketch_eps"
|
|
].__class__.__name__
|
|
== "float64"
|
|
)
|
|
|
|
def test_regressor_basic(self):
|
|
regressor = SparkXGBRegressor()
|
|
model = regressor.fit(self.reg_df_train)
|
|
pred_result = model.transform(self.reg_df_test).collect()
|
|
for row in pred_result:
|
|
self.assertTrue(
|
|
np.isclose(row.prediction, row.expected_prediction, atol=1e-3)
|
|
)
|
|
|
|
def test_classifier_basic(self):
|
|
classifier = SparkXGBClassifier()
|
|
model = classifier.fit(self.cls_df_train)
|
|
pred_result = model.transform(self.cls_df_test).collect()
|
|
for row in pred_result:
|
|
self.assertEqual(row.prediction, row.expected_prediction)
|
|
self.assertTrue(
|
|
np.allclose(row.probability, row.expected_probability, rtol=1e-3)
|
|
)
|
|
|
|
def test_multi_classifier(self):
|
|
classifier = SparkXGBClassifier()
|
|
model = classifier.fit(self.multi_cls_df_train)
|
|
pred_result = model.transform(self.multi_cls_df_test).collect()
|
|
for row in pred_result:
|
|
self.assertTrue(
|
|
np.allclose(row.probability, row.expected_probability, rtol=1e-3)
|
|
)
|
|
|
|
def _check_sub_dict_match(self, sub_dist, whole_dict, excluding_keys):
|
|
for k in sub_dist:
|
|
if k not in excluding_keys:
|
|
self.assertTrue(k in whole_dict, f"check on {k} failed")
|
|
self.assertEqual(sub_dist[k], whole_dict[k], f"check on {k} failed")
|
|
|
|
def test_regressor_with_params(self):
|
|
regressor = SparkXGBRegressor(**self.reg_params)
|
|
all_params = dict(
|
|
**(regressor._gen_xgb_params_dict()),
|
|
**(regressor._gen_fit_params_dict()),
|
|
**(regressor._gen_predict_params_dict()),
|
|
)
|
|
self._check_sub_dict_match(
|
|
self.reg_params, all_params, excluding_keys=_non_booster_params
|
|
)
|
|
|
|
model = regressor.fit(self.reg_df_train)
|
|
all_params = dict(
|
|
**(model._gen_xgb_params_dict()),
|
|
**(model._gen_fit_params_dict()),
|
|
**(model._gen_predict_params_dict()),
|
|
)
|
|
self._check_sub_dict_match(
|
|
self.reg_params, all_params, excluding_keys=_non_booster_params
|
|
)
|
|
pred_result = model.transform(self.reg_df_test).collect()
|
|
for row in pred_result:
|
|
self.assertTrue(
|
|
np.isclose(
|
|
row.prediction, row.expected_prediction_with_params, atol=1e-3
|
|
)
|
|
)
|
|
|
|
def test_classifier_with_params(self):
|
|
classifier = SparkXGBClassifier(**self.cls_params)
|
|
all_params = dict(
|
|
**(classifier._gen_xgb_params_dict()),
|
|
**(classifier._gen_fit_params_dict()),
|
|
**(classifier._gen_predict_params_dict()),
|
|
)
|
|
self._check_sub_dict_match(
|
|
self.cls_params, all_params, excluding_keys=_non_booster_params
|
|
)
|
|
|
|
model = classifier.fit(self.cls_df_train)
|
|
all_params = dict(
|
|
**(model._gen_xgb_params_dict()),
|
|
**(model._gen_fit_params_dict()),
|
|
**(model._gen_predict_params_dict()),
|
|
)
|
|
self._check_sub_dict_match(
|
|
self.cls_params, all_params, excluding_keys=_non_booster_params
|
|
)
|
|
pred_result = model.transform(self.cls_df_test).collect()
|
|
for row in pred_result:
|
|
self.assertEqual(row.prediction, row.expected_prediction_with_params)
|
|
self.assertTrue(
|
|
np.allclose(
|
|
row.probability, row.expected_probability_with_params, rtol=1e-3
|
|
)
|
|
)
|
|
|
|
def test_regressor_model_save_load(self):
|
|
tmp_dir = self.get_local_tmp_dir()
|
|
path = "file:" + tmp_dir
|
|
regressor = SparkXGBRegressor(**self.reg_params)
|
|
model = regressor.fit(self.reg_df_train)
|
|
model.save(path)
|
|
loaded_model = SparkXGBRegressorModel.load(path)
|
|
self.assertEqual(model.uid, loaded_model.uid)
|
|
for k, v in self.reg_params.items():
|
|
self.assertEqual(loaded_model.getOrDefault(k), v)
|
|
|
|
pred_result = loaded_model.transform(self.reg_df_test).collect()
|
|
for row in pred_result:
|
|
self.assertTrue(
|
|
np.isclose(
|
|
row.prediction, row.expected_prediction_with_params, atol=1e-3
|
|
)
|
|
)
|
|
|
|
with self.assertRaisesRegex(AssertionError, "Expected class name"):
|
|
SparkXGBClassifierModel.load(path)
|
|
|
|
self.assert_model_compatible(model, tmp_dir)
|
|
|
|
def test_classifier_model_save_load(self):
|
|
tmp_dir = self.get_local_tmp_dir()
|
|
path = "file:" + tmp_dir
|
|
regressor = SparkXGBClassifier(**self.cls_params)
|
|
model = regressor.fit(self.cls_df_train)
|
|
model.save(path)
|
|
loaded_model = SparkXGBClassifierModel.load(path)
|
|
self.assertEqual(model.uid, loaded_model.uid)
|
|
for k, v in self.cls_params.items():
|
|
self.assertEqual(loaded_model.getOrDefault(k), v)
|
|
|
|
pred_result = loaded_model.transform(self.cls_df_test).collect()
|
|
for row in pred_result:
|
|
self.assertTrue(
|
|
np.allclose(
|
|
row.probability, row.expected_probability_with_params, atol=1e-3
|
|
)
|
|
)
|
|
|
|
with self.assertRaisesRegex(AssertionError, "Expected class name"):
|
|
SparkXGBRegressorModel.load(path)
|
|
|
|
self.assert_model_compatible(model, tmp_dir)
|
|
|
|
@staticmethod
|
|
def _get_params_map(params_kv, estimator):
|
|
return {getattr(estimator, k): v for k, v in params_kv.items()}
|
|
|
|
def test_regressor_model_pipeline_save_load(self):
|
|
tmp_dir = self.get_local_tmp_dir()
|
|
path = "file:" + tmp_dir
|
|
regressor = SparkXGBRegressor()
|
|
pipeline = Pipeline(stages=[regressor])
|
|
pipeline = pipeline.copy(extra=self._get_params_map(self.reg_params, regressor))
|
|
model = pipeline.fit(self.reg_df_train)
|
|
model.save(path)
|
|
|
|
loaded_model = PipelineModel.load(path)
|
|
for k, v in self.reg_params.items():
|
|
self.assertEqual(loaded_model.stages[0].getOrDefault(k), v)
|
|
|
|
pred_result = loaded_model.transform(self.reg_df_test).collect()
|
|
for row in pred_result:
|
|
self.assertTrue(
|
|
np.isclose(
|
|
row.prediction, row.expected_prediction_with_params, atol=1e-3
|
|
)
|
|
)
|
|
self.assert_model_compatible(model.stages[0], tmp_dir)
|
|
|
|
def test_classifier_model_pipeline_save_load(self):
|
|
tmp_dir = self.get_local_tmp_dir()
|
|
path = "file:" + tmp_dir
|
|
classifier = SparkXGBClassifier()
|
|
pipeline = Pipeline(stages=[classifier])
|
|
pipeline = pipeline.copy(
|
|
extra=self._get_params_map(self.cls_params, classifier)
|
|
)
|
|
model = pipeline.fit(self.cls_df_train)
|
|
model.save(path)
|
|
|
|
loaded_model = PipelineModel.load(path)
|
|
for k, v in self.cls_params.items():
|
|
self.assertEqual(loaded_model.stages[0].getOrDefault(k), v)
|
|
|
|
pred_result = loaded_model.transform(self.cls_df_test).collect()
|
|
for row in pred_result:
|
|
self.assertTrue(
|
|
np.allclose(
|
|
row.probability, row.expected_probability_with_params, atol=1e-3
|
|
)
|
|
)
|
|
self.assert_model_compatible(model.stages[0], tmp_dir)
|
|
|
|
def test_classifier_with_cross_validator(self):
|
|
xgb_classifer = SparkXGBClassifier()
|
|
paramMaps = ParamGridBuilder().addGrid(xgb_classifer.max_depth, [1, 2]).build()
|
|
cvBin = CrossValidator(
|
|
estimator=xgb_classifer,
|
|
estimatorParamMaps=paramMaps,
|
|
evaluator=BinaryClassificationEvaluator(),
|
|
seed=1,
|
|
numFolds=2,
|
|
)
|
|
cvBinModel = cvBin.fit(self.cls_df_train_large)
|
|
cvBinModel.transform(self.cls_df_test)
|
|
|
|
def test_callbacks(self):
|
|
from xgboost.callback import LearningRateScheduler
|
|
|
|
path = self.get_local_tmp_dir()
|
|
|
|
def custom_learning_rate(boosting_round):
|
|
return 1.0 / (boosting_round + 1)
|
|
|
|
cb = [LearningRateScheduler(custom_learning_rate)]
|
|
regressor = SparkXGBRegressor(callbacks=cb)
|
|
|
|
# Test the save/load of the estimator instead of the model, since
|
|
# the callbacks param only exists in the estimator but not in the model
|
|
regressor.save(path)
|
|
regressor = SparkXGBRegressor.load(path)
|
|
|
|
model = regressor.fit(self.reg_df_train)
|
|
pred_result = model.transform(self.reg_df_test).collect()
|
|
for row in pred_result:
|
|
self.assertTrue(
|
|
np.isclose(
|
|
row.prediction, row.expected_prediction_with_callbacks, atol=1e-3
|
|
)
|
|
)
|
|
|
|
def test_train_with_initial_model(self):
|
|
path = self.get_local_tmp_dir()
|
|
reg1 = SparkXGBRegressor(**self.reg_params)
|
|
model = reg1.fit(self.reg_df_train)
|
|
init_booster = model.get_booster()
|
|
reg2 = SparkXGBRegressor(max_depth=2, n_estimators=2, xgb_model=init_booster)
|
|
model21 = reg2.fit(self.reg_df_train)
|
|
pred_res21 = model21.transform(self.reg_df_test).collect()
|
|
reg2.save(path)
|
|
reg2 = SparkXGBRegressor.load(path)
|
|
self.assertTrue(reg2.getOrDefault(reg2.xgb_model) is not None)
|
|
model22 = reg2.fit(self.reg_df_train)
|
|
pred_res22 = model22.transform(self.reg_df_test).collect()
|
|
# Test the transform result is the same for original and loaded model
|
|
for row1, row2 in zip(pred_res21, pred_res22):
|
|
self.assertTrue(np.isclose(row1.prediction, row2.prediction, atol=1e-3))
|
|
|
|
def test_classifier_with_base_margin(self):
|
|
cls_without_base_margin = SparkXGBClassifier(weight_col="weight")
|
|
model_without_base_margin = cls_without_base_margin.fit(
|
|
self.cls_df_train_without_base_margin
|
|
)
|
|
pred_result_without_base_margin = model_without_base_margin.transform(
|
|
self.cls_df_test_without_base_margin
|
|
).collect()
|
|
for row in pred_result_without_base_margin:
|
|
self.assertTrue(
|
|
np.isclose(
|
|
row.prediction,
|
|
row.expected_prediction_without_base_margin,
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
np.testing.assert_allclose(
|
|
row.probability, row.expected_prob_without_base_margin, atol=1e-3
|
|
)
|
|
|
|
cls_with_same_base_margin = SparkXGBClassifier(
|
|
weight_col="weight", base_margin_col="base_margin"
|
|
)
|
|
model_with_same_base_margin = cls_with_same_base_margin.fit(
|
|
self.cls_df_train_with_same_base_margin
|
|
)
|
|
pred_result_with_same_base_margin = model_with_same_base_margin.transform(
|
|
self.cls_df_test_with_same_base_margin
|
|
).collect()
|
|
for row in pred_result_with_same_base_margin:
|
|
self.assertTrue(
|
|
np.isclose(
|
|
row.prediction, row.expected_prediction_with_base_margin, atol=1e-3
|
|
)
|
|
)
|
|
np.testing.assert_allclose(
|
|
row.probability, row.expected_prob_with_base_margin, atol=1e-3
|
|
)
|
|
|
|
cls_with_different_base_margin = SparkXGBClassifier(
|
|
weight_col="weight", base_margin_col="base_margin"
|
|
)
|
|
model_with_different_base_margin = cls_with_different_base_margin.fit(
|
|
self.cls_df_train_with_different_base_margin
|
|
)
|
|
pred_result_with_different_base_margin = (
|
|
model_with_different_base_margin.transform(
|
|
self.cls_df_test_with_different_base_margin
|
|
).collect()
|
|
)
|
|
for row in pred_result_with_different_base_margin:
|
|
self.assertTrue(
|
|
np.isclose(
|
|
row.prediction, row.expected_prediction_with_base_margin, atol=1e-3
|
|
)
|
|
)
|
|
np.testing.assert_allclose(
|
|
row.probability, row.expected_prob_with_base_margin, atol=1e-3
|
|
)
|
|
|
|
def test_regressor_with_weight_eval(self):
|
|
# with weight
|
|
regressor_with_weight = SparkXGBRegressor(weight_col="weight")
|
|
model_with_weight = regressor_with_weight.fit(
|
|
self.reg_df_train_with_eval_weight
|
|
)
|
|
pred_result_with_weight = model_with_weight.transform(
|
|
self.reg_df_test_with_eval_weight
|
|
).collect()
|
|
for row in pred_result_with_weight:
|
|
assert np.isclose(
|
|
row.prediction, row.expected_prediction_with_weight, atol=1e-3
|
|
)
|
|
|
|
# with eval
|
|
regressor_with_eval = SparkXGBRegressor(**self.reg_params_with_eval)
|
|
model_with_eval = regressor_with_eval.fit(self.reg_df_train_with_eval_weight)
|
|
assert np.isclose(
|
|
model_with_eval._xgb_sklearn_model.best_score,
|
|
self.reg_with_eval_best_score,
|
|
atol=1e-3,
|
|
), (
|
|
f"Expected best score: {self.reg_with_eval_best_score}, but ",
|
|
f"get {model_with_eval._xgb_sklearn_model.best_score}",
|
|
)
|
|
|
|
pred_result_with_eval = model_with_eval.transform(
|
|
self.reg_df_test_with_eval_weight
|
|
).collect()
|
|
for row in pred_result_with_eval:
|
|
self.assertTrue(
|
|
np.isclose(
|
|
row.prediction, row.expected_prediction_with_eval, atol=1e-3
|
|
),
|
|
f"Expect prediction is {row.expected_prediction_with_eval},"
|
|
f"but get {row.prediction}",
|
|
)
|
|
# with weight and eval
|
|
regressor_with_weight_eval = SparkXGBRegressor(
|
|
weight_col="weight", **self.reg_params_with_eval
|
|
)
|
|
model_with_weight_eval = regressor_with_weight_eval.fit(
|
|
self.reg_df_train_with_eval_weight
|
|
)
|
|
pred_result_with_weight_eval = model_with_weight_eval.transform(
|
|
self.reg_df_test_with_eval_weight
|
|
).collect()
|
|
self.assertTrue(
|
|
np.isclose(
|
|
model_with_weight_eval._xgb_sklearn_model.best_score,
|
|
self.reg_with_eval_and_weight_best_score,
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
for row in pred_result_with_weight_eval:
|
|
self.assertTrue(
|
|
np.isclose(
|
|
row.prediction,
|
|
row.expected_prediction_with_weight_and_eval,
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
|
|
def test_classifier_with_weight_eval(self):
|
|
# with weight and eval
|
|
# Added scale_pos_weight because in 1.4.2, the original answer returns 0.5 which
|
|
# doesn't really indicate this working correctly.
|
|
classifier_with_weight_eval = SparkXGBClassifier(
|
|
weight_col="weight", scale_pos_weight=4, **self.cls_params_with_eval
|
|
)
|
|
model_with_weight_eval = classifier_with_weight_eval.fit(
|
|
self.cls_df_train_with_eval_weight
|
|
)
|
|
pred_result_with_weight_eval = model_with_weight_eval.transform(
|
|
self.cls_df_test_with_eval_weight
|
|
).collect()
|
|
self.assertTrue(
|
|
np.isclose(
|
|
model_with_weight_eval._xgb_sklearn_model.best_score,
|
|
self.cls_with_eval_and_weight_best_score,
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
for row in pred_result_with_weight_eval:
|
|
self.assertTrue(
|
|
np.allclose(
|
|
row.probability, row.expected_prob_with_weight_and_eval, atol=1e-3
|
|
)
|
|
)
|
|
|
|
def test_num_workers_param(self):
|
|
regressor = SparkXGBRegressor(num_workers=-1)
|
|
self.assertRaises(ValueError, regressor._validate_params)
|
|
classifier = SparkXGBClassifier(num_workers=0)
|
|
self.assertRaises(ValueError, classifier._validate_params)
|
|
|
|
def test_use_gpu_param(self):
|
|
classifier = SparkXGBClassifier(use_gpu=True, tree_method="exact")
|
|
self.assertRaises(ValueError, classifier._validate_params)
|
|
regressor = SparkXGBRegressor(use_gpu=True, tree_method="exact")
|
|
self.assertRaises(ValueError, regressor._validate_params)
|
|
regressor = SparkXGBRegressor(use_gpu=True, tree_method="gpu_hist")
|
|
regressor = SparkXGBRegressor(use_gpu=True)
|
|
classifier = SparkXGBClassifier(use_gpu=True, tree_method="gpu_hist")
|
|
classifier = SparkXGBClassifier(use_gpu=True)
|
|
|
|
def test_convert_to_sklearn_model(self):
|
|
classifier = SparkXGBClassifier(
|
|
n_estimators=200, missing=2.0, max_depth=3, sketch_eps=0.5
|
|
)
|
|
clf_model = classifier.fit(self.cls_df_train)
|
|
|
|
regressor = SparkXGBRegressor(
|
|
n_estimators=200, missing=2.0, max_depth=3, sketch_eps=0.5
|
|
)
|
|
reg_model = regressor.fit(self.reg_df_train)
|
|
|
|
# Check that regardless of what booster, _convert_to_model converts to the correct class type
|
|
sklearn_classifier = classifier._convert_to_sklearn_model(
|
|
clf_model.get_booster().save_raw("json"),
|
|
clf_model.get_booster().save_config(),
|
|
)
|
|
assert isinstance(sklearn_classifier, XGBClassifier)
|
|
assert sklearn_classifier.n_estimators == 200
|
|
assert sklearn_classifier.missing == 2.0
|
|
assert sklearn_classifier.max_depth == 3
|
|
assert sklearn_classifier.get_params()["sketch_eps"] == 0.5
|
|
|
|
sklearn_regressor = regressor._convert_to_sklearn_model(
|
|
reg_model.get_booster().save_raw("json"),
|
|
reg_model.get_booster().save_config(),
|
|
)
|
|
assert isinstance(sklearn_regressor, XGBRegressor)
|
|
assert sklearn_regressor.n_estimators == 200
|
|
assert sklearn_regressor.missing == 2.0
|
|
assert sklearn_regressor.max_depth == 3
|
|
assert sklearn_classifier.get_params()["sketch_eps"] == 0.5
|
|
|
|
def test_feature_importances(self):
|
|
reg1 = SparkXGBRegressor(**self.reg_params)
|
|
model = reg1.fit(self.reg_df_train)
|
|
booster = model.get_booster()
|
|
self.assertEqual(model.get_feature_importances(), booster.get_score())
|
|
self.assertEqual(
|
|
model.get_feature_importances(importance_type="gain"),
|
|
booster.get_score(importance_type="gain"),
|
|
)
|
|
|
|
def test_regressor_array_col_as_feature(self):
|
|
train_dataset = self.reg_df_train.withColumn(
|
|
"features", vector_to_array(spark_sql_func.col("features"))
|
|
)
|
|
test_dataset = self.reg_df_test.withColumn(
|
|
"features", vector_to_array(spark_sql_func.col("features"))
|
|
)
|
|
regressor = SparkXGBRegressor()
|
|
model = regressor.fit(train_dataset)
|
|
pred_result = model.transform(test_dataset).collect()
|
|
for row in pred_result:
|
|
self.assertTrue(
|
|
np.isclose(row.prediction, row.expected_prediction, atol=1e-3)
|
|
)
|
|
|
|
def test_classifier_array_col_as_feature(self):
|
|
train_dataset = self.cls_df_train.withColumn(
|
|
"features", vector_to_array(spark_sql_func.col("features"))
|
|
)
|
|
test_dataset = self.cls_df_test.withColumn(
|
|
"features", vector_to_array(spark_sql_func.col("features"))
|
|
)
|
|
classifier = SparkXGBClassifier()
|
|
model = classifier.fit(train_dataset)
|
|
|
|
pred_result = model.transform(test_dataset).collect()
|
|
for row in pred_result:
|
|
self.assertEqual(row.prediction, row.expected_prediction)
|
|
self.assertTrue(
|
|
np.allclose(row.probability, row.expected_probability, rtol=1e-3)
|
|
)
|
|
|
|
def test_classifier_with_feature_names_types_weights(self):
|
|
classifier = SparkXGBClassifier(
|
|
feature_names=["a1", "a2", "a3"],
|
|
feature_types=["i", "int", "float"],
|
|
feature_weights=[2.0, 5.0, 3.0],
|
|
)
|
|
model = classifier.fit(self.cls_df_train)
|
|
model.transform(self.cls_df_test).collect()
|
|
|
|
def test_regressor_with_sparse_optim(self):
|
|
regressor = SparkXGBRegressor(missing=0.0)
|
|
model = regressor.fit(self.reg_df_sparse_train)
|
|
assert model._xgb_sklearn_model.missing == 0.0
|
|
pred_result = model.transform(self.reg_df_sparse_train).collect()
|
|
|
|
# enable sparse optimiaztion
|
|
regressor2 = SparkXGBRegressor(missing=0.0, enable_sparse_data_optim=True)
|
|
model2 = regressor2.fit(self.reg_df_sparse_train)
|
|
assert model2.getOrDefault(model2.enable_sparse_data_optim)
|
|
assert model2._xgb_sklearn_model.missing == 0.0
|
|
pred_result2 = model2.transform(self.reg_df_sparse_train).collect()
|
|
|
|
for row1, row2 in zip(pred_result, pred_result2):
|
|
self.assertTrue(np.isclose(row1.prediction, row2.prediction, atol=1e-3))
|
|
|
|
def test_classifier_with_sparse_optim(self):
|
|
cls = SparkXGBClassifier(missing=0.0)
|
|
model = cls.fit(self.cls_df_sparse_train)
|
|
assert model._xgb_sklearn_model.missing == 0.0
|
|
pred_result = model.transform(self.cls_df_sparse_train).collect()
|
|
|
|
# enable sparse optimiaztion
|
|
cls2 = SparkXGBClassifier(missing=0.0, enable_sparse_data_optim=True)
|
|
model2 = cls2.fit(self.cls_df_sparse_train)
|
|
assert model2.getOrDefault(model2.enable_sparse_data_optim)
|
|
assert model2._xgb_sklearn_model.missing == 0.0
|
|
pred_result2 = model2.transform(self.cls_df_sparse_train).collect()
|
|
|
|
for row1, row2 in zip(pred_result, pred_result2):
|
|
self.assertTrue(np.allclose(row1.probability, row2.probability, rtol=1e-3))
|
|
|
|
def test_ranker(self):
|
|
ranker = SparkXGBRanker(qid_col="qid")
|
|
assert ranker.getOrDefault(ranker.objective) == "rank:pairwise"
|
|
model = ranker.fit(self.ranker_df_train)
|
|
pred_result = model.transform(self.ranker_df_test).collect()
|
|
|
|
for row in pred_result:
|
|
assert np.isclose(row.prediction, row.expected_prediction, rtol=1e-3)
|
|
|
|
def test_empty_validation_data(self):
|
|
df_train = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(10.1, 11.2, 11.3), 0, False),
|
|
(Vectors.dense(1, 1.2, 1.3), 1, False),
|
|
(Vectors.dense(14.0, 15.0, 16.0), 0, False),
|
|
(Vectors.dense(1.1, 1.2, 1.3), 1, True),
|
|
],
|
|
["features", "label", "val_col"],
|
|
)
|
|
classifier = SparkXGBClassifier(
|
|
num_workers=2,
|
|
min_child_weight=0.0,
|
|
reg_alpha=0,
|
|
reg_lambda=0,
|
|
validation_indicator_col="val_col",
|
|
)
|
|
model = classifier.fit(df_train)
|
|
pred_result = model.transform(df_train).collect()
|
|
for row in pred_result:
|
|
self.assertEqual(row.prediction, row.label)
|
|
|
|
def test_empty_train_data(self):
|
|
df_train = self.session.createDataFrame(
|
|
[
|
|
(Vectors.dense(10.1, 11.2, 11.3), 0, True),
|
|
(Vectors.dense(1, 1.2, 1.3), 1, True),
|
|
(Vectors.dense(14.0, 15.0, 16.0), 0, True),
|
|
(Vectors.dense(1.1, 1.2, 1.3), 1, False),
|
|
],
|
|
["features", "label", "val_col"],
|
|
)
|
|
classifier = SparkXGBClassifier(
|
|
num_workers=2,
|
|
min_child_weight=0.0,
|
|
reg_alpha=0,
|
|
reg_lambda=0,
|
|
validation_indicator_col="val_col",
|
|
)
|
|
model = classifier.fit(df_train)
|
|
pred_result = model.transform(df_train).collect()
|
|
for row in pred_result:
|
|
self.assertEqual(row.prediction, 1.0)
|
|
|
|
def test_empty_partition(self):
|
|
# raw_df.repartition(4) will result int severe data skew, actually,
|
|
# there is no any data in reducer partition 1, reducer partition 2
|
|
# see https://github.com/dmlc/xgboost/issues/8221
|
|
raw_df = self.session.range(0, 100, 1, 50).withColumn(
|
|
"label", spark_sql_func.when(spark_sql_func.rand(1) > 0.5, 1).otherwise(0)
|
|
)
|
|
vector_assembler = (
|
|
VectorAssembler().setInputCols(["id"]).setOutputCol("features")
|
|
)
|
|
data_trans = vector_assembler.setHandleInvalid("keep").transform(raw_df)
|
|
data_trans.show(100)
|
|
|
|
classifier = SparkXGBClassifier(
|
|
num_workers=4,
|
|
)
|
|
classifier.fit(data_trans)
|
|
|
|
def test_early_stop_param_validation(self):
|
|
classifier = SparkXGBClassifier(early_stopping_rounds=1)
|
|
with pytest.raises(ValueError, match="early_stopping_rounds"):
|
|
classifier.fit(self.cls_df_train)
|