xgboost/demo/rmm_plugin/rmm_mgpu_with_dask.py
Philip Hyunsu Cho 9adb812a0a
RMM integration plugin (#5873)
* [CI] Add RMM as an optional dependency

* Replace caching allocator with pool allocator from RMM

* Revert "Replace caching allocator with pool allocator from RMM"

This reverts commit e15845d4e72e890c2babe31a988b26503a7d9038.

* Use rmm::mr::get_default_resource()

* Try setting default resource (doesn't work yet)

* Allocate pool_mr in the heap

* Prevent leaking pool_mr handle

* Separate EXPECT_DEATH() in separate test suite suffixed DeathTest

* Turn off death tests for RMM

* Address reviewer's feedback

* Prevent leaking of cuda_mr

* Fix Jenkinsfile syntax

* Remove unnecessary function in Jenkinsfile

* [CI] Install NCCL into RMM container

* Run Python tests

* Try building with RMM, CUDA 10.0

* Do not use RMM for CUDA 10.0 target

* Actually test for test_rmm flag

* Fix TestPythonGPU

* Use CNMeM allocator, since pool allocator doesn't yet support multiGPU

* Use 10.0 container to build RMM-enabled XGBoost

* Revert "Use 10.0 container to build RMM-enabled XGBoost"

This reverts commit 789021fa31112e25b683aef39fff375403060141.

* Fix Jenkinsfile

* [CI] Assign larger /dev/shm to NCCL

* Use 10.2 artifact to run multi-GPU Python tests

* Add CUDA 10.0 -> 11.0 cross-version test; remove CUDA 10.0 target

* Rename Conda env rmm_test -> gpu_test

* Use env var to opt into CNMeM pool for C++ tests

* Use identical CUDA version for RMM builds and tests

* Use Pytest fixtures to enable RMM pool in Python tests

* Move RMM to plugin/CMakeLists.txt; use PLUGIN_RMM

* Use per-device MR; use command arg in gtest

* Set CMake prefix path to use Conda env

* Use 0.15 nightly version of RMM

* Remove unnecessary header

* Fix a unit test when cudf is missing

* Add RMM demos

* Remove print()

* Use HostDeviceVector in GPU predictor

* Simplify pytest setup; use LocalCUDACluster fixture

* Address reviewers' commments

Co-authored-by: Hyunsu Cho <chohyu01@cs.wasshington.edu>
2020-08-12 01:26:02 -07:00

28 lines
1.0 KiB
Python

import xgboost as xgb
from sklearn.datasets import make_classification
import dask
from dask.distributed import Client
from dask_cuda import LocalCUDACluster
def main(client):
X, y = make_classification(n_samples=10000, n_informative=5, n_classes=3)
X = dask.array.from_array(X)
y = dask.array.from_array(y)
dtrain = xgb.dask.DaskDMatrix(client, X, label=y)
params = {'max_depth': 8, 'eta': 0.01, 'objective': 'multi:softprob', 'num_class': 3,
'tree_method': 'gpu_hist'}
output = xgb.dask.train(client, params, dtrain, num_boost_round=100,
evals=[(dtrain, 'train')])
bst = output['booster']
history = output['history']
for i, e in enumerate(history['train']['merror']):
print(f'[{i}] train-merror: {e}')
if __name__ == '__main__':
# To use RMM pool allocator with a GPU Dask cluster, just add rmm_pool_size option to
# LocalCUDACluster constructor.
with LocalCUDACluster(rmm_pool_size='2GB') as cluster:
with Client(cluster) as client:
main(client)