101 lines
3.4 KiB
Plaintext
101 lines
3.4 KiB
Plaintext
/*!
|
|
* Copyright 2019-2022 by XGBoost Contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <thrust/device_vector.h>
|
|
#include <thrust/host_vector.h>
|
|
#include <thrust/sequence.h>
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "../../../../src/tree/gpu_hist/row_partitioner.cuh"
|
|
#include "../../helpers.h"
|
|
#include "xgboost/base.h"
|
|
#include "xgboost/context.h"
|
|
#include "xgboost/task.h"
|
|
#include "xgboost/tree_model.h"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
|
|
void TestUpdatePositionBatch() {
|
|
const int kNumRows = 10;
|
|
RowPartitioner rp(0, kNumRows);
|
|
auto rows = rp.GetRowsHost(0);
|
|
EXPECT_EQ(rows.size(), kNumRows);
|
|
for (auto i = 0ull; i < kNumRows; i++) {
|
|
EXPECT_EQ(rows[i], i);
|
|
}
|
|
std::vector<int> extra_data = {0};
|
|
// Send the first five training instances to the right node
|
|
// and the second 5 to the left node
|
|
rp.UpdatePositionBatch({0}, {1}, {2}, extra_data, [=] __device__(RowPartitioner::RowIndexT ridx, int) {
|
|
return ridx > 4;
|
|
});
|
|
rows = rp.GetRowsHost(1);
|
|
for (auto r : rows) {
|
|
EXPECT_GT(r, 4);
|
|
}
|
|
rows = rp.GetRowsHost(2);
|
|
for (auto r : rows) {
|
|
EXPECT_LT(r, 5);
|
|
}
|
|
|
|
// Split the left node again
|
|
rp.UpdatePositionBatch({1}, {3}, {4}, extra_data,[=] __device__(RowPartitioner::RowIndexT ridx, int) {
|
|
return ridx < 7;
|
|
});
|
|
EXPECT_EQ(rp.GetRows(3).size(), 2);
|
|
EXPECT_EQ(rp.GetRows(4).size(), 3);
|
|
}
|
|
|
|
TEST(RowPartitioner, Batch) { TestUpdatePositionBatch(); }
|
|
|
|
void TestSortPositionBatch(const std::vector<int>& ridx_in, const std::vector<Segment>& segments) {
|
|
thrust::device_vector<uint32_t> ridx = ridx_in;
|
|
thrust::device_vector<uint32_t> ridx_tmp(ridx_in.size());
|
|
thrust::device_vector<bst_uint> counts(segments.size());
|
|
|
|
auto op = [=] __device__(auto ridx, int data) { return ridx % 2 == 0; };
|
|
std::vector<int> op_data(segments.size());
|
|
std::vector<PerNodeData<int>> h_batch_info(segments.size());
|
|
dh::TemporaryArray<PerNodeData<int>> d_batch_info(segments.size());
|
|
|
|
std::size_t total_rows = 0;
|
|
for (size_t i = 0; i < segments.size(); i++) {
|
|
h_batch_info[i] = {segments.at(i), 0};
|
|
total_rows += segments.at(i).Size();
|
|
}
|
|
dh::safe_cuda(cudaMemcpyAsync(d_batch_info.data().get(), h_batch_info.data(),
|
|
h_batch_info.size() * sizeof(PerNodeData<int>), cudaMemcpyDefault,
|
|
nullptr));
|
|
dh::device_vector<int8_t> tmp;
|
|
SortPositionBatch<uint32_t, decltype(op), int>(dh::ToSpan(d_batch_info), dh::ToSpan(ridx),
|
|
dh::ToSpan(ridx_tmp), dh::ToSpan(counts),
|
|
total_rows, op, &tmp);
|
|
|
|
auto op_without_data = [=] __device__(auto ridx) { return ridx % 2 == 0; };
|
|
for (size_t i = 0; i < segments.size(); i++) {
|
|
auto begin = ridx.begin() + segments[i].begin;
|
|
auto end = ridx.begin() + segments[i].end;
|
|
bst_uint count = counts[i];
|
|
auto left_partition_count =
|
|
thrust::count_if(thrust::device, begin, begin + count, op_without_data);
|
|
EXPECT_EQ(left_partition_count, count);
|
|
auto right_partition_count =
|
|
thrust::count_if(thrust::device, begin + count, end, op_without_data);
|
|
EXPECT_EQ(right_partition_count, 0);
|
|
}
|
|
}
|
|
|
|
TEST(GpuHist, SortPositionBatch) {
|
|
TestSortPositionBatch({0, 1, 2, 3, 4, 5}, {{0, 3}, {3, 6}});
|
|
TestSortPositionBatch({0, 1, 2, 3, 4, 5}, {{0, 1}, {3, 6}});
|
|
TestSortPositionBatch({0, 1, 2, 3, 4, 5}, {{0, 6}});
|
|
TestSortPositionBatch({0, 1, 2, 3, 4, 5}, {{3, 6}, {0, 2}});
|
|
}
|
|
|
|
} // namespace tree
|
|
} // namespace xgboost
|