xgboost/tests/cpp/helpers.h
Jiaming Yuan 972730cde0
Use matrix for gradient. (#9508)
- Use the `linalg::Matrix` for storing gradients.
- New API for the custom objective.
- Custom objective for multi-class/multi-target is now required to return the correct shape.
- Custom objective for Python can accept arrays with any strides. (row-major, column-major)
2023-08-24 05:29:52 +08:00

575 lines
19 KiB
C++

/**
* Copyright 2016-2023 by XGBoost contributors
*/
#pragma once
#include <gtest/gtest.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <xgboost/base.h>
#include <xgboost/context.h>
#include <xgboost/json.h>
#include <xgboost/learner.h> // for LearnerModelParam
#include <xgboost/model.h> // for Configurable
#include <cstdint> // std::int32_t
#include <cstdio>
#include <fstream>
#include <iostream>
#include <memory>
#include <string>
#include <thread>
#include <vector>
#include "../../src/collective/communicator-inl.h"
#include "../../src/common/common.h"
#include "../../src/common/threading_utils.h"
#include "../../src/data/array_interface.h"
#include "filesystem.h" // dmlc::TemporaryDirectory
#include "xgboost/linalg.h"
#if defined(__CUDACC__)
#define DeclareUnifiedTest(name) GPU ## name
#else
#define DeclareUnifiedTest(name) name
#endif
#if defined(__CUDACC__)
#define GPUIDX (common::AllVisibleGPUs() == 1 ? 0 : collective::GetRank())
#else
#define GPUIDX (-1)
#endif
#if defined(__CUDACC__)
#define DeclareUnifiedDistributedTest(name) MGPU ## name
#else
#define DeclareUnifiedDistributedTest(name) name
#endif
namespace xgboost {
class ObjFunction;
class Metric;
struct LearnerModelParam;
class GradientBooster;
}
template <typename Float>
Float RelError(Float l, Float r) {
static_assert(std::is_floating_point<Float>::value);
return std::abs(1.0f - l / r);
}
bool FileExists(const std::string& filename);
void CreateSimpleTestData(const std::string& filename);
// Create a libsvm format file with 3 entries per-row. `zero_based` specifies whether it's
// 0-based indexing.
void CreateBigTestData(const std::string& filename, size_t n_entries, bool zero_based = true);
void CreateTestCSV(std::string const& path, size_t rows, size_t cols);
void CheckObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
std::vector<xgboost::bst_float> preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights,
std::vector<xgboost::bst_float> out_grad,
std::vector<xgboost::bst_float> out_hess);
xgboost::Json CheckConfigReloadImpl(xgboost::Configurable* const configurable,
std::string name);
template <typename T>
xgboost::Json CheckConfigReload(std::unique_ptr<T> const& configurable,
std::string name = "") {
return CheckConfigReloadImpl(dynamic_cast<xgboost::Configurable*>(configurable.get()),
name);
}
void CheckRankingObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
std::vector<xgboost::bst_float> preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights,
std::vector<xgboost::bst_uint> groups,
std::vector<xgboost::bst_float> out_grad,
std::vector<xgboost::bst_float> out_hess);
xgboost::bst_float GetMetricEval(
xgboost::Metric * metric,
xgboost::HostDeviceVector<xgboost::bst_float> const& preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights = std::vector<xgboost::bst_float>(),
std::vector<xgboost::bst_uint> groups = std::vector<xgboost::bst_uint>(),
xgboost::DataSplitMode data_split_Mode = xgboost::DataSplitMode::kRow);
double GetMultiMetricEval(xgboost::Metric* metric,
xgboost::HostDeviceVector<xgboost::bst_float> const& preds,
xgboost::linalg::Tensor<float, 2> const& labels,
std::vector<xgboost::bst_float> weights = {},
std::vector<xgboost::bst_uint> groups = {},
xgboost::DataSplitMode data_split_Mode = xgboost::DataSplitMode::kRow);
namespace xgboost {
float GetBaseScore(Json const &config);
/*!
* \brief Linear congruential generator.
*
* The distribution defined in std is not portable. Given the same seed, it
* migth produce different outputs on different platforms or with different
* compilers. The SimpleLCG implemented here is to make sure all tests are
* reproducible.
*/
class SimpleLCG {
private:
using StateType = uint64_t;
static StateType constexpr kDefaultInit = 3;
static StateType constexpr kDefaultAlpha = 61;
static StateType constexpr kMaxValue = (static_cast<StateType>(1) << 32) - 1;
StateType state_;
StateType const alpha_;
StateType const mod_;
public:
using result_type = StateType; // NOLINT
public:
SimpleLCG() : state_{kDefaultInit}, alpha_{kDefaultAlpha}, mod_{kMaxValue} {}
SimpleLCG(SimpleLCG const& that) = default;
SimpleLCG(SimpleLCG&& that) = default;
void Seed(StateType seed) { state_ = seed % mod_; }
/*!
* \brief Initialize SimpleLCG.
*
* \param state Initial state, can also be considered as seed. If set to
* zero, SimpleLCG will use internal default value.
*/
explicit SimpleLCG(StateType state)
: state_{state == 0 ? kDefaultInit : state}, alpha_{kDefaultAlpha}, mod_{kMaxValue} {}
StateType operator()();
StateType Min() const;
StateType Max() const;
constexpr result_type static min() { return 0; }; // NOLINT
constexpr result_type static max() { return kMaxValue; } // NOLINT
};
template <typename ResultT>
class SimpleRealUniformDistribution {
private:
ResultT const lower_;
ResultT const upper_;
/*! \brief Over-simplified version of std::generate_canonical. */
template <size_t Bits, typename GeneratorT>
ResultT GenerateCanonical(GeneratorT* rng) const {
static_assert(std::is_floating_point<ResultT>::value,
"Result type must be floating point.");
long double const r = (static_cast<long double>(rng->Max())
- static_cast<long double>(rng->Min())) + 1.0L;
auto const log2r = static_cast<size_t>(std::log(r) / std::log(2.0L));
size_t m = std::max<size_t>(1UL, (Bits + log2r - 1UL) / log2r);
ResultT sum_value = 0, r_k = 1;
for (size_t k = m; k != 0; --k) {
sum_value += static_cast<ResultT>((*rng)() - rng->Min()) * r_k;
r_k *= static_cast<ResultT>(r);
}
ResultT res = sum_value / r_k;
return res;
}
public:
SimpleRealUniformDistribution(ResultT l, ResultT u) :
lower_{l}, upper_{u} {}
template <typename GeneratorT>
ResultT operator()(GeneratorT* rng) const {
ResultT tmp = GenerateCanonical<std::numeric_limits<ResultT>::digits,
GeneratorT>(rng);
auto ret = (tmp * (upper_ - lower_)) + lower_;
// Correct floating point error.
return std::max(ret, lower_);
}
};
template <typename T>
Json GetArrayInterface(HostDeviceVector<T> const* storage, size_t rows, size_t cols) {
Json array_interface{Object()};
array_interface["data"] = std::vector<Json>(2);
if (storage->DeviceCanRead()) {
array_interface["data"][0] = Integer{reinterpret_cast<int64_t>(storage->ConstDevicePointer())};
array_interface["stream"] = nullptr;
} else {
array_interface["data"][0] = Integer{reinterpret_cast<int64_t>(storage->ConstHostPointer())};
}
array_interface["data"][1] = Boolean(false);
array_interface["shape"] = std::vector<Json>(2);
array_interface["shape"][0] = rows;
array_interface["shape"][1] = cols;
char t = linalg::detail::ArrayInterfaceHandler::TypeChar<T>();
array_interface["typestr"] = String(std::string{"<"} + t + std::to_string(sizeof(T)));
array_interface["version"] = 3;
return array_interface;
}
// Generate in-memory random data without using DMatrix.
class RandomDataGenerator {
bst_row_t rows_;
size_t cols_;
float sparsity_;
float lower_{0.0f};
float upper_{1.0f};
bst_target_t n_targets_{1};
std::int32_t device_{Context::kCpuId};
std::size_t n_batches_{0};
std::uint64_t seed_{0};
SimpleLCG lcg_;
bst_bin_t bins_{0};
std::vector<FeatureType> ft_;
bst_cat_t max_cat_;
Json ArrayInterfaceImpl(HostDeviceVector<float>* storage, size_t rows, size_t cols) const;
void GenerateLabels(std::shared_ptr<DMatrix> p_fmat) const;
public:
RandomDataGenerator(bst_row_t rows, size_t cols, float sparsity)
: rows_{rows}, cols_{cols}, sparsity_{sparsity}, lcg_{seed_} {}
RandomDataGenerator& Lower(float v) {
lower_ = v;
return *this;
}
RandomDataGenerator& Upper(float v) {
upper_ = v;
return *this;
}
RandomDataGenerator& Device(int32_t d) {
device_ = d;
return *this;
}
RandomDataGenerator& Batches(std::size_t n_batches) {
n_batches_ = n_batches;
return *this;
}
RandomDataGenerator& Seed(uint64_t s) {
seed_ = s;
lcg_.Seed(seed_);
return *this;
}
RandomDataGenerator& Bins(bst_bin_t b) {
bins_ = b;
return *this;
}
RandomDataGenerator& Type(common::Span<FeatureType> ft) {
CHECK_EQ(ft.size(), cols_);
ft_.resize(ft.size());
std::copy(ft.cbegin(), ft.cend(), ft_.begin());
return *this;
}
RandomDataGenerator& MaxCategory(bst_cat_t cat) {
max_cat_ = cat;
return *this;
}
RandomDataGenerator& Targets(bst_target_t n_targets) {
n_targets_ = n_targets;
return *this;
}
void GenerateDense(HostDeviceVector<float>* out) const;
std::string GenerateArrayInterface(HostDeviceVector<float>* storage) const;
/*!
* \brief Generate batches of array interface stored in consecutive memory.
*
* \param storage The consecutive momory used to store the arrays.
* \param batches Number of batches.
*
* \return A vector storing JSON string representation of interface for each batch, and
* a single JSON string representing the consecutive memory as a whole
* (combining all the batches).
*/
std::pair<std::vector<std::string>, std::string> GenerateArrayInterfaceBatch(
HostDeviceVector<float>* storage, size_t batches) const;
std::string GenerateColumnarArrayInterface(std::vector<HostDeviceVector<float>>* data) const;
void GenerateCSR(HostDeviceVector<float>* value, HostDeviceVector<bst_row_t>* row_ptr,
HostDeviceVector<bst_feature_t>* columns) const;
[[nodiscard]] std::shared_ptr<DMatrix> GenerateDMatrix(bool with_label = false,
bool float_label = true,
size_t classes = 1) const;
[[nodiscard]] std::shared_ptr<DMatrix> GenerateSparsePageDMatrix(std::string prefix,
bool with_label) const;
#if defined(XGBOOST_USE_CUDA)
std::shared_ptr<DMatrix> GenerateDeviceDMatrix(bool with_label);
#endif
std::shared_ptr<DMatrix> GenerateQuantileDMatrix(bool with_label);
};
// Generate an empty DMatrix, mostly for its meta info.
inline std::shared_ptr<DMatrix> EmptyDMatrix() {
return RandomDataGenerator{0, 0, 0.0}.GenerateDMatrix();
}
inline std::vector<float> GenerateRandomCategoricalSingleColumn(int n, size_t num_categories) {
std::vector<float> x(n);
std::mt19937 rng(0);
std::uniform_int_distribution<size_t> dist(0, num_categories - 1);
std::generate(x.begin(), x.end(), [&]() { return dist(rng); });
// Make sure each category is present
for (size_t i = 0; i < num_categories; i++) {
x[i] = static_cast<decltype(x)::value_type>(i);
}
return x;
}
std::shared_ptr<DMatrix> GetDMatrixFromData(const std::vector<float>& x, std::size_t num_rows,
bst_feature_t num_columns);
/**
* \brief Create Sparse Page using data iterator.
*
* \param n_samples Total number of rows for all batches combined.
* \param n_features Number of features
* \param n_batches Number of batches
* \param prefix Cache prefix, can be used for specifying file path.
*
* \return A Sparse DMatrix with n_batches.
*/
std::unique_ptr<DMatrix> CreateSparsePageDMatrix(bst_row_t n_samples, bst_feature_t n_features,
size_t n_batches, std::string prefix = "cache");
/**
* Deprecated, stop using it
*/
std::unique_ptr<DMatrix> CreateSparsePageDMatrix(size_t n_entries, std::string prefix = "cache");
/**
* Deprecated, stop using it
*
* \brief Creates dmatrix with some records, each record containing random number of
* features in [1, n_cols]
*
* \param n_rows Number of records to create.
* \param n_cols Max number of features within that record.
* \param page_size Sparse page size for the pages within the dmatrix. If page size is 0
* then the entire dmatrix is resident in memory; else, multiple sparse pages
* of page size are created and backed to disk, which would have to be
* streamed in at point of use.
* \param deterministic The content inside the dmatrix is constant for this configuration, if true;
* else, the content changes every time this method is invoked
*
* \return The new dmatrix.
*/
std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(
size_t n_rows, size_t n_cols, size_t page_size, bool deterministic,
const dmlc::TemporaryDirectory& tempdir = dmlc::TemporaryDirectory());
std::unique_ptr<GradientBooster> CreateTrainedGBM(std::string name, Args kwargs, size_t kRows,
size_t kCols,
LearnerModelParam const* learner_model_param,
Context const* generic_param);
/**
* \brief Make a context that uses CUDA if device >= 0.
*/
inline Context MakeCUDACtx(std::int32_t device) {
if (device == Context::kCpuId) {
return Context{};
}
return Context{}.MakeCUDA(device);
}
inline HostDeviceVector<GradientPair> GenerateRandomGradients(const size_t n_rows,
float lower = 0.0f,
float upper = 1.0f) {
xgboost::SimpleLCG gen;
xgboost::SimpleRealUniformDistribution<bst_float> dist(lower, upper);
std::vector<GradientPair> h_gpair(n_rows);
for (auto& gpair : h_gpair) {
bst_float grad = dist(&gen);
bst_float hess = dist(&gen);
gpair = GradientPair(grad, hess);
}
HostDeviceVector<GradientPair> gpair(h_gpair);
return gpair;
}
inline linalg::Matrix<GradientPair> GenerateRandomGradients(Context const* ctx, bst_row_t n_rows,
bst_target_t n_targets,
float lower = 0.0f,
float upper = 1.0f) {
auto g = GenerateRandomGradients(n_rows * n_targets, lower, upper);
linalg::Matrix<GradientPair> gpair({n_rows, static_cast<bst_row_t>(n_targets)}, ctx->Device());
gpair.Data()->Copy(g);
return gpair;
}
typedef void *DMatrixHandle; // NOLINT(*);
class ArrayIterForTest {
protected:
HostDeviceVector<float> data_;
size_t iter_{0};
DMatrixHandle proxy_;
std::unique_ptr<RandomDataGenerator> rng_;
std::vector<std::string> batches_;
std::string interface_;
size_t rows_;
size_t cols_;
size_t n_batches_;
public:
size_t static constexpr Rows() { return 1024; }
size_t static constexpr Batches() { return 100; }
size_t static constexpr Cols() { return 13; }
public:
[[nodiscard]] std::string AsArray() const { return interface_; }
virtual int Next() = 0;
virtual void Reset() { iter_ = 0; }
[[nodiscard]] std::size_t Iter() const { return iter_; }
auto Proxy() -> decltype(proxy_) { return proxy_; }
explicit ArrayIterForTest(float sparsity, size_t rows, size_t cols, size_t batches);
/**
* \brief Create iterator with user provided data.
*/
explicit ArrayIterForTest(Context const* ctx, HostDeviceVector<float> const& data,
std::size_t n_samples, bst_feature_t n_features, std::size_t n_batches);
virtual ~ArrayIterForTest();
};
class CudaArrayIterForTest : public ArrayIterForTest {
public:
explicit CudaArrayIterForTest(float sparsity, size_t rows = Rows(), size_t cols = Cols(),
size_t batches = Batches());
int Next() override;
~CudaArrayIterForTest() override = default;
};
class NumpyArrayIterForTest : public ArrayIterForTest {
public:
explicit NumpyArrayIterForTest(float sparsity, size_t rows = Rows(), size_t cols = Cols(),
size_t batches = Batches());
explicit NumpyArrayIterForTest(Context const* ctx, HostDeviceVector<float> const& data,
std::size_t n_samples, bst_feature_t n_features,
std::size_t n_batches)
: ArrayIterForTest{ctx, data, n_samples, n_features, n_batches} {}
int Next() override;
~NumpyArrayIterForTest() override = default;
};
void DMatrixToCSR(DMatrix *dmat, std::vector<float> *p_data,
std::vector<size_t> *p_row_ptr,
std::vector<bst_feature_t> *p_cids);
typedef void *DataIterHandle; // NOLINT(*)
inline void Reset(DataIterHandle self) {
static_cast<ArrayIterForTest*>(self)->Reset();
}
inline int Next(DataIterHandle self) {
return static_cast<ArrayIterForTest*>(self)->Next();
}
class RMMAllocator;
using RMMAllocatorPtr = std::unique_ptr<RMMAllocator, void(*)(RMMAllocator*)>;
RMMAllocatorPtr SetUpRMMResourceForCppTests(int argc, char** argv);
/*
* \brief Make learner model param
*/
inline LearnerModelParam MakeMP(bst_feature_t n_features, float base_score, uint32_t n_groups,
int32_t device = Context::kCpuId) {
size_t shape[1]{1};
LearnerModelParam mparam(n_features, linalg::Tensor<float, 1>{{base_score}, shape, device},
n_groups, 1, MultiStrategy::kOneOutputPerTree);
return mparam;
}
inline std::int32_t AllThreadsForTest() { return Context{}.Threads(); }
template <bool use_nccl = false, typename Function, typename... Args>
void RunWithInMemoryCommunicator(int32_t world_size, Function&& function, Args&&... args) {
auto run = [&](auto rank) {
Json config{JsonObject()};
if constexpr (use_nccl) {
config["xgboost_communicator"] = String("in-memory-nccl");
} else {
config["xgboost_communicator"] = String("in-memory");
}
config["in_memory_world_size"] = world_size;
config["in_memory_rank"] = rank;
xgboost::collective::Init(config);
std::forward<Function>(function)(std::forward<Args>(args)...);
xgboost::collective::Finalize();
};
#if defined(_OPENMP)
common::ParallelFor(world_size, world_size, run);
#else
std::vector<std::thread> threads;
for (auto rank = 0; rank < world_size; rank++) {
threads.emplace_back(run, rank);
}
for (auto& thread : threads) {
thread.join();
}
#endif
}
class BaseMGPUTest : public ::testing::Test {
protected:
int world_size_;
bool use_nccl_{false};
void SetUp() override {
auto const n_gpus = common::AllVisibleGPUs();
if (n_gpus <= 1) {
// Use a single GPU to simulate distributed environment.
world_size_ = 3;
// NCCL doesn't like sharing a single GPU, so we use the adapter instead.
use_nccl_ = false;
} else {
// Use multiple GPUs for real.
world_size_ = n_gpus;
use_nccl_ = true;
}
}
template <typename Function, typename... Args>
void DoTest(Function&& function, Args&&... args) {
if (use_nccl_) {
RunWithInMemoryCommunicator<true>(world_size_, function, args...);
} else {
RunWithInMemoryCommunicator<false>(world_size_, function, args...);
}
}
};
class DeclareUnifiedDistributedTest(MetricTest) : public BaseMGPUTest{};
} // namespace xgboost