xgboost/src/tree/updater_refresh.cc
Rory Mitchell ccf80703ef
Clang-tidy static analysis (#3222)
* Clang-tidy static analysis

* Modernise checks

* Google coding standard checks

* Identifier renaming according to Google style
2018-04-19 18:57:13 +12:00

159 lines
5.5 KiB
C++

/*!
* Copyright 2014 by Contributors
* \file updater_refresh.cc
* \brief refresh the statistics and leaf value on the tree on the dataset
* \author Tianqi Chen
*/
#include <xgboost/tree_updater.h>
#include <vector>
#include <limits>
#include "./param.h"
#include "../common/sync.h"
#include "../common/io.h"
namespace xgboost {
namespace tree {
DMLC_REGISTRY_FILE_TAG(updater_refresh);
/*! \brief pruner that prunes a tree after growing finishs */
template<typename TStats>
class TreeRefresher: public TreeUpdater {
public:
void Init(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.InitAllowUnknown(args);
}
// update the tree, do pruning
void Update(HostDeviceVector<GradientPair> *gpair,
DMatrix *p_fmat,
const std::vector<RegTree*> &trees) override {
if (trees.size() == 0) return;
std::vector<GradientPair> &gpair_h = gpair->HostVector();
// number of threads
// thread temporal space
std::vector<std::vector<TStats> > stemp;
std::vector<RegTree::FVec> fvec_temp;
// setup temp space for each thread
const int nthread = omp_get_max_threads();
fvec_temp.resize(nthread, RegTree::FVec());
stemp.resize(nthread, std::vector<TStats>());
#pragma omp parallel
{
int tid = omp_get_thread_num();
int num_nodes = 0;
for (auto tree : trees) {
num_nodes += tree->param.num_nodes;
}
stemp[tid].resize(num_nodes, TStats(param_));
std::fill(stemp[tid].begin(), stemp[tid].end(), TStats(param_));
fvec_temp[tid].Init(trees[0]->param.num_feature);
}
// if it is C++11, use lazy evaluation for Allreduce,
// to gain speedup in recovery
#if __cplusplus >= 201103L
auto lazy_get_stats = [&]()
#endif
{
const MetaInfo &info = p_fmat->Info();
// start accumulating statistics
dmlc::DataIter<RowBatch> *iter = p_fmat->RowIterator();
iter->BeforeFirst();
while (iter->Next()) {
const RowBatch &batch = iter->Value();
CHECK_LT(batch.size, std::numeric_limits<unsigned>::max());
const auto nbatch = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nbatch; ++i) {
RowBatch::Inst inst = batch[i];
const int tid = omp_get_thread_num();
const auto ridx = static_cast<bst_uint>(batch.base_rowid + i);
RegTree::FVec &feats = fvec_temp[tid];
feats.Fill(inst);
int offset = 0;
for (auto tree : trees) {
AddStats(*tree, feats, gpair_h, info, ridx,
dmlc::BeginPtr(stemp[tid]) + offset);
offset += tree->param.num_nodes;
}
feats.Drop(inst);
}
}
// aggregate the statistics
auto num_nodes = static_cast<int>(stemp[0].size());
#pragma omp parallel for schedule(static)
for (int nid = 0; nid < num_nodes; ++nid) {
for (int tid = 1; tid < nthread; ++tid) {
stemp[0][nid].Add(stemp[tid][nid]);
}
}
};
#if __cplusplus >= 201103L
reducer_.Allreduce(dmlc::BeginPtr(stemp[0]), stemp[0].size(), lazy_get_stats);
#else
reducer_.Allreduce(dmlc::BeginPtr(stemp[0]), stemp[0].size());
#endif
// rescale learning rate according to size of trees
float lr = param_.learning_rate;
param_.learning_rate = lr / trees.size();
int offset = 0;
for (auto tree : trees) {
for (int rid = 0; rid < tree->param.num_roots; ++rid) {
this->Refresh(dmlc::BeginPtr(stemp[0]) + offset, rid, tree);
}
offset += tree->param.num_nodes;
}
// set learning rate back
param_.learning_rate = lr;
}
private:
inline static void AddStats(const RegTree &tree,
const RegTree::FVec &feat,
const std::vector<GradientPair> &gpair,
const MetaInfo &info,
const bst_uint ridx,
TStats *gstats) {
// start from groups that belongs to current data
auto pid = static_cast<int>(info.GetRoot(ridx));
gstats[pid].Add(gpair, info, ridx);
// tranverse tree
while (!tree[pid].IsLeaf()) {
unsigned split_index = tree[pid].SplitIndex();
pid = tree.GetNext(pid, feat.Fvalue(split_index), feat.IsMissing(split_index));
gstats[pid].Add(gpair, info, ridx);
}
}
inline void Refresh(const TStats *gstats,
int nid, RegTree *p_tree) {
RegTree &tree = *p_tree;
tree.Stat(nid).base_weight = static_cast<bst_float>(gstats[nid].CalcWeight(param_));
tree.Stat(nid).sum_hess = static_cast<bst_float>(gstats[nid].sum_hess);
gstats[nid].SetLeafVec(param_, tree.Leafvec(nid));
if (tree[nid].IsLeaf()) {
if (param_.refresh_leaf) {
tree[nid].SetLeaf(tree.Stat(nid).base_weight * param_.learning_rate);
}
} else {
tree.Stat(nid).loss_chg = static_cast<bst_float>(
gstats[tree[nid].LeftChild()].CalcGain(param_) +
gstats[tree[nid].RightChild()].CalcGain(param_) -
gstats[nid].CalcGain(param_));
this->Refresh(gstats, tree[nid].LeftChild(), p_tree);
this->Refresh(gstats, tree[nid].RightChild(), p_tree);
}
}
// training parameter
TrainParam param_;
// reducer
rabit::Reducer<TStats, TStats::Reduce> reducer_;
};
XGBOOST_REGISTER_TREE_UPDATER(TreeRefresher, "refresh")
.describe("Refresher that refreshes the weight and statistics according to data.")
.set_body([]() {
return new TreeRefresher<GradStats>();
});
} // namespace tree
} // namespace xgboost