* Clang-tidy static analysis * Modernise checks * Google coding standard checks * Identifier renaming according to Google style
159 lines
5.5 KiB
C++
159 lines
5.5 KiB
C++
/*!
|
|
* Copyright 2014 by Contributors
|
|
* \file updater_refresh.cc
|
|
* \brief refresh the statistics and leaf value on the tree on the dataset
|
|
* \author Tianqi Chen
|
|
*/
|
|
|
|
#include <xgboost/tree_updater.h>
|
|
#include <vector>
|
|
#include <limits>
|
|
#include "./param.h"
|
|
#include "../common/sync.h"
|
|
#include "../common/io.h"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
|
|
DMLC_REGISTRY_FILE_TAG(updater_refresh);
|
|
|
|
/*! \brief pruner that prunes a tree after growing finishs */
|
|
template<typename TStats>
|
|
class TreeRefresher: public TreeUpdater {
|
|
public:
|
|
void Init(const std::vector<std::pair<std::string, std::string> >& args) override {
|
|
param_.InitAllowUnknown(args);
|
|
}
|
|
// update the tree, do pruning
|
|
void Update(HostDeviceVector<GradientPair> *gpair,
|
|
DMatrix *p_fmat,
|
|
const std::vector<RegTree*> &trees) override {
|
|
if (trees.size() == 0) return;
|
|
std::vector<GradientPair> &gpair_h = gpair->HostVector();
|
|
// number of threads
|
|
// thread temporal space
|
|
std::vector<std::vector<TStats> > stemp;
|
|
std::vector<RegTree::FVec> fvec_temp;
|
|
// setup temp space for each thread
|
|
const int nthread = omp_get_max_threads();
|
|
fvec_temp.resize(nthread, RegTree::FVec());
|
|
stemp.resize(nthread, std::vector<TStats>());
|
|
#pragma omp parallel
|
|
{
|
|
int tid = omp_get_thread_num();
|
|
int num_nodes = 0;
|
|
for (auto tree : trees) {
|
|
num_nodes += tree->param.num_nodes;
|
|
}
|
|
stemp[tid].resize(num_nodes, TStats(param_));
|
|
std::fill(stemp[tid].begin(), stemp[tid].end(), TStats(param_));
|
|
fvec_temp[tid].Init(trees[0]->param.num_feature);
|
|
}
|
|
// if it is C++11, use lazy evaluation for Allreduce,
|
|
// to gain speedup in recovery
|
|
#if __cplusplus >= 201103L
|
|
auto lazy_get_stats = [&]()
|
|
#endif
|
|
{
|
|
const MetaInfo &info = p_fmat->Info();
|
|
// start accumulating statistics
|
|
dmlc::DataIter<RowBatch> *iter = p_fmat->RowIterator();
|
|
iter->BeforeFirst();
|
|
while (iter->Next()) {
|
|
const RowBatch &batch = iter->Value();
|
|
CHECK_LT(batch.size, std::numeric_limits<unsigned>::max());
|
|
const auto nbatch = static_cast<bst_omp_uint>(batch.size);
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint i = 0; i < nbatch; ++i) {
|
|
RowBatch::Inst inst = batch[i];
|
|
const int tid = omp_get_thread_num();
|
|
const auto ridx = static_cast<bst_uint>(batch.base_rowid + i);
|
|
RegTree::FVec &feats = fvec_temp[tid];
|
|
feats.Fill(inst);
|
|
int offset = 0;
|
|
for (auto tree : trees) {
|
|
AddStats(*tree, feats, gpair_h, info, ridx,
|
|
dmlc::BeginPtr(stemp[tid]) + offset);
|
|
offset += tree->param.num_nodes;
|
|
}
|
|
feats.Drop(inst);
|
|
}
|
|
}
|
|
// aggregate the statistics
|
|
auto num_nodes = static_cast<int>(stemp[0].size());
|
|
#pragma omp parallel for schedule(static)
|
|
for (int nid = 0; nid < num_nodes; ++nid) {
|
|
for (int tid = 1; tid < nthread; ++tid) {
|
|
stemp[0][nid].Add(stemp[tid][nid]);
|
|
}
|
|
}
|
|
};
|
|
#if __cplusplus >= 201103L
|
|
reducer_.Allreduce(dmlc::BeginPtr(stemp[0]), stemp[0].size(), lazy_get_stats);
|
|
#else
|
|
reducer_.Allreduce(dmlc::BeginPtr(stemp[0]), stemp[0].size());
|
|
#endif
|
|
// rescale learning rate according to size of trees
|
|
float lr = param_.learning_rate;
|
|
param_.learning_rate = lr / trees.size();
|
|
int offset = 0;
|
|
for (auto tree : trees) {
|
|
for (int rid = 0; rid < tree->param.num_roots; ++rid) {
|
|
this->Refresh(dmlc::BeginPtr(stemp[0]) + offset, rid, tree);
|
|
}
|
|
offset += tree->param.num_nodes;
|
|
}
|
|
// set learning rate back
|
|
param_.learning_rate = lr;
|
|
}
|
|
|
|
private:
|
|
inline static void AddStats(const RegTree &tree,
|
|
const RegTree::FVec &feat,
|
|
const std::vector<GradientPair> &gpair,
|
|
const MetaInfo &info,
|
|
const bst_uint ridx,
|
|
TStats *gstats) {
|
|
// start from groups that belongs to current data
|
|
auto pid = static_cast<int>(info.GetRoot(ridx));
|
|
gstats[pid].Add(gpair, info, ridx);
|
|
// tranverse tree
|
|
while (!tree[pid].IsLeaf()) {
|
|
unsigned split_index = tree[pid].SplitIndex();
|
|
pid = tree.GetNext(pid, feat.Fvalue(split_index), feat.IsMissing(split_index));
|
|
gstats[pid].Add(gpair, info, ridx);
|
|
}
|
|
}
|
|
inline void Refresh(const TStats *gstats,
|
|
int nid, RegTree *p_tree) {
|
|
RegTree &tree = *p_tree;
|
|
tree.Stat(nid).base_weight = static_cast<bst_float>(gstats[nid].CalcWeight(param_));
|
|
tree.Stat(nid).sum_hess = static_cast<bst_float>(gstats[nid].sum_hess);
|
|
gstats[nid].SetLeafVec(param_, tree.Leafvec(nid));
|
|
if (tree[nid].IsLeaf()) {
|
|
if (param_.refresh_leaf) {
|
|
tree[nid].SetLeaf(tree.Stat(nid).base_weight * param_.learning_rate);
|
|
}
|
|
} else {
|
|
tree.Stat(nid).loss_chg = static_cast<bst_float>(
|
|
gstats[tree[nid].LeftChild()].CalcGain(param_) +
|
|
gstats[tree[nid].RightChild()].CalcGain(param_) -
|
|
gstats[nid].CalcGain(param_));
|
|
this->Refresh(gstats, tree[nid].LeftChild(), p_tree);
|
|
this->Refresh(gstats, tree[nid].RightChild(), p_tree);
|
|
}
|
|
}
|
|
// training parameter
|
|
TrainParam param_;
|
|
// reducer
|
|
rabit::Reducer<TStats, TStats::Reduce> reducer_;
|
|
};
|
|
|
|
XGBOOST_REGISTER_TREE_UPDATER(TreeRefresher, "refresh")
|
|
.describe("Refresher that refreshes the weight and statistics according to data.")
|
|
.set_body([]() {
|
|
return new TreeRefresher<GradStats>();
|
|
});
|
|
} // namespace tree
|
|
} // namespace xgboost
|