xgboost/src/common/stats.h
Jiaming Yuan cce4af4acf
Initial support for quantile loss. (#8750)
- Add support for Python.
- Add objective.
2023-02-16 02:30:18 +08:00

136 lines
4.7 KiB
C++

/**
* Copyright 2022-2023 by XGBoost Contributors
*/
#ifndef XGBOOST_COMMON_STATS_H_
#define XGBOOST_COMMON_STATS_H_
#include <algorithm>
#include <iterator> // for distance
#include <limits>
#include <vector>
#include "algorithm.h" // for StableSort
#include "common.h" // AssertGPUSupport, OptionalWeights
#include "optional_weight.h" // OptionalWeights
#include "transform_iterator.h" // MakeIndexTransformIter
#include "xgboost/context.h" // Context
#include "xgboost/linalg.h" // TensorView,VectorView
#include "xgboost/logging.h" // CHECK_GE
namespace xgboost {
namespace common {
/**
* @brief Quantile using linear interpolation.
*
* https://www.itl.nist.gov/div898/handbook/prc/section2/prc262.htm
*
* \param alpha Quantile, must be in range [0, 1].
* \param begin Iterator begin for input array.
* \param end Iterator end for input array.
*
* \return The result of interpolation.
*/
template <typename Iter>
float Quantile(Context const* ctx, double alpha, Iter const& begin, Iter const& end) {
CHECK(alpha >= 0 && alpha <= 1);
auto n = static_cast<double>(std::distance(begin, end));
if (n == 0) {
return std::numeric_limits<float>::quiet_NaN();
}
std::vector<std::size_t> sorted_idx(n);
std::iota(sorted_idx.begin(), sorted_idx.end(), 0);
if (omp_in_parallel()) {
std::stable_sort(sorted_idx.begin(), sorted_idx.end(),
[&](std::size_t l, std::size_t r) { return *(begin + l) < *(begin + r); });
} else {
StableSort(ctx, sorted_idx.begin(), sorted_idx.end(),
[&](std::size_t l, std::size_t r) { return *(begin + l) < *(begin + r); });
}
auto val = [&](size_t i) { return *(begin + sorted_idx[i]); };
static_assert(std::is_same<decltype(val(0)), float>::value, "");
if (alpha <= (1 / (n + 1))) {
return val(0);
}
if (alpha >= (n / (n + 1))) {
return val(sorted_idx.size() - 1);
}
double x = alpha * static_cast<double>((n + 1));
double k = std::floor(x) - 1;
CHECK_GE(k, 0);
double d = (x - 1) - k;
auto v0 = val(static_cast<size_t>(k));
auto v1 = val(static_cast<size_t>(k) + 1);
return v0 + d * (v1 - v0);
}
/**
* \brief Calculate the weighted quantile with step function. Unlike the unweighted
* version, no interpolation is used.
*
* See https://aakinshin.net/posts/weighted-quantiles/ for some discussions on computing
* weighted quantile with interpolation.
*/
template <typename Iter, typename WeightIter>
float WeightedQuantile(Context const* ctx, double alpha, Iter begin, Iter end, WeightIter w_begin) {
auto n = static_cast<double>(std::distance(begin, end));
if (n == 0) {
return std::numeric_limits<float>::quiet_NaN();
}
std::vector<size_t> sorted_idx(n);
std::iota(sorted_idx.begin(), sorted_idx.end(), 0);
if (omp_in_parallel()) {
std::stable_sort(sorted_idx.begin(), sorted_idx.end(),
[&](std::size_t l, std::size_t r) { return *(begin + l) < *(begin + r); });
} else {
StableSort(ctx, sorted_idx.begin(), sorted_idx.end(),
[&](std::size_t l, std::size_t r) { return *(begin + l) < *(begin + r); });
}
auto val = [&](size_t i) { return *(begin + sorted_idx[i]); };
std::vector<float> weight_cdf(n); // S_n
// weighted cdf is sorted during construction
weight_cdf[0] = *(w_begin + sorted_idx[0]);
for (size_t i = 1; i < n; ++i) {
weight_cdf[i] = weight_cdf[i - 1] + w_begin[sorted_idx[i]];
}
float thresh = weight_cdf.back() * alpha;
std::size_t idx =
std::lower_bound(weight_cdf.cbegin(), weight_cdf.cend(), thresh) - weight_cdf.cbegin();
idx = std::min(idx, static_cast<size_t>(n - 1));
return val(idx);
}
namespace cuda_impl {
void Median(Context const* ctx, linalg::TensorView<float const, 2> t, OptionalWeights weights,
linalg::Tensor<float, 1>* out);
void Mean(Context const* ctx, linalg::VectorView<float const> v, linalg::VectorView<float> out);
#if !defined(XGBOOST_USE_CUDA)
inline void Median(Context const*, linalg::TensorView<float const, 2>, OptionalWeights,
linalg::Tensor<float, 1>*) {
common::AssertGPUSupport();
}
inline void Mean(Context const*, linalg::VectorView<float const>, linalg::VectorView<float>) {
common::AssertGPUSupport();
}
#endif // !defined(XGBOOST_USE_CUDA)
} // namespace cuda_impl
/**
* \brief Calculate medians for each column of the input matrix.
*/
void Median(Context const* ctx, linalg::Tensor<float, 2> const& t,
HostDeviceVector<float> const& weights, linalg::Tensor<float, 1>* out);
void Mean(Context const* ctx, linalg::Vector<float> const& v, linalg::Vector<float>* out);
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_STATS_H_