xgboost/tests/cpp/tree/gpu_hist/test_gradient_based_sampler.cu

154 lines
5.4 KiB
Plaintext

/*!
* Copyright 2020-2021 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include "../../../../src/data/ellpack_page.cuh"
#include "../../../../src/tree/gpu_hist/gradient_based_sampler.cuh"
#include "../../../../src/tree/param.h"
#include "../../helpers.h"
#include "dmlc/filesystem.h"
namespace xgboost {
namespace tree {
void VerifySampling(size_t page_size,
float subsample,
int sampling_method,
bool fixed_size_sampling = true,
bool check_sum = true) {
constexpr size_t kRows = 4096;
constexpr size_t kCols = 1;
size_t sample_rows = kRows * subsample;
dmlc::TemporaryDirectory tmpdir;
std::unique_ptr<DMatrix> dmat(
CreateSparsePageDMatrixWithRC(kRows, kCols, page_size, true, tmpdir));
auto gpair = GenerateRandomGradients(kRows);
GradientPair sum_gpair{};
for (const auto& gp : gpair.ConstHostVector()) {
sum_gpair += gp;
}
gpair.SetDevice(0);
BatchParam param{0, 256};
auto page = (*dmat->GetBatches<EllpackPage>(param).begin()).Impl();
if (page_size != 0) {
EXPECT_NE(page->n_rows, kRows);
}
GradientBasedSampler sampler(page, kRows, param, subsample, sampling_method);
auto sample = sampler.Sample(gpair.DeviceSpan(), dmat.get());
if (fixed_size_sampling) {
EXPECT_EQ(sample.sample_rows, kRows);
EXPECT_EQ(sample.page->n_rows, kRows);
EXPECT_EQ(sample.gpair.size(), kRows);
} else {
EXPECT_NEAR(sample.sample_rows, sample_rows, kRows * 0.03);
EXPECT_NEAR(sample.page->n_rows, sample_rows, kRows * 0.03f);
EXPECT_NEAR(sample.gpair.size(), sample_rows, kRows * 0.03f);
}
GradientPair sum_sampled_gpair{};
std::vector<GradientPair> sampled_gpair_h(sample.gpair.size());
dh::CopyDeviceSpanToVector(&sampled_gpair_h, sample.gpair);
for (const auto& gp : sampled_gpair_h) {
sum_sampled_gpair += gp;
}
if (check_sum) {
EXPECT_NEAR(sum_gpair.GetGrad(), sum_sampled_gpair.GetGrad(), 0.03f * kRows);
EXPECT_NEAR(sum_gpair.GetHess(), sum_sampled_gpair.GetHess(), 0.03f * kRows);
} else {
EXPECT_NEAR(sum_gpair.GetGrad() / kRows, sum_sampled_gpair.GetGrad() / sample_rows, 0.03f);
EXPECT_NEAR(sum_gpair.GetHess() / kRows, sum_sampled_gpair.GetHess() / sample_rows, 0.03f);
}
}
TEST(GradientBasedSampler, NoSampling) {
constexpr size_t kPageSize = 0;
constexpr float kSubsample = 1.0f;
constexpr int kSamplingMethod = TrainParam::kUniform;
VerifySampling(kPageSize, kSubsample, kSamplingMethod);
}
// In external mode, when not sampling, we concatenate the pages together.
TEST(GradientBasedSampler, NoSamplingExternalMemory) {
constexpr size_t kRows = 2048;
constexpr size_t kCols = 1;
constexpr float kSubsample = 1.0f;
constexpr size_t kPageSize = 1024;
// Create a DMatrix with multiple batches.
dmlc::TemporaryDirectory tmpdir;
std::unique_ptr<DMatrix>
dmat(CreateSparsePageDMatrixWithRC(kRows, kCols, kPageSize, true, tmpdir));
auto gpair = GenerateRandomGradients(kRows);
gpair.SetDevice(0);
BatchParam param{0, 256};
auto page = (*dmat->GetBatches<EllpackPage>(param).begin()).Impl();
EXPECT_NE(page->n_rows, kRows);
GradientBasedSampler sampler(page, kRows, param, kSubsample, TrainParam::kUniform);
auto sample = sampler.Sample(gpair.DeviceSpan(), dmat.get());
auto sampled_page = sample.page;
EXPECT_EQ(sample.sample_rows, kRows);
EXPECT_EQ(sample.gpair.size(), gpair.Size());
EXPECT_EQ(sample.gpair.data(), gpair.DevicePointer());
EXPECT_EQ(sampled_page->n_rows, kRows);
std::vector<common::CompressedByteT> buffer(sampled_page->gidx_buffer.HostVector());
common::CompressedIterator<common::CompressedByteT>
ci(buffer.data(), sampled_page->NumSymbols());
size_t offset = 0;
for (auto& batch : dmat->GetBatches<EllpackPage>(param)) {
auto page = batch.Impl();
std::vector<common::CompressedByteT> page_buffer(page->gidx_buffer.HostVector());
common::CompressedIterator<common::CompressedByteT>
page_ci(page_buffer.data(), page->NumSymbols());
size_t num_elements = page->n_rows * page->row_stride;
for (size_t i = 0; i < num_elements; i++) {
EXPECT_EQ(ci[i + offset], page_ci[i]);
}
offset += num_elements;
}
}
TEST(GradientBasedSampler, UniformSampling) {
constexpr size_t kPageSize = 0;
constexpr float kSubsample = 0.5;
constexpr int kSamplingMethod = TrainParam::kUniform;
constexpr bool kFixedSizeSampling = true;
constexpr bool kCheckSum = false;
VerifySampling(kPageSize, kSubsample, kSamplingMethod, kFixedSizeSampling, kCheckSum);
}
TEST(GradientBasedSampler, UniformSamplingExternalMemory) {
constexpr size_t kPageSize = 1024;
constexpr float kSubsample = 0.5;
constexpr int kSamplingMethod = TrainParam::kUniform;
constexpr bool kFixedSizeSampling = false;
constexpr bool kCheckSum = false;
VerifySampling(kPageSize, kSubsample, kSamplingMethod, kFixedSizeSampling, kCheckSum);
}
TEST(GradientBasedSampler, GradientBasedSampling) {
constexpr size_t kPageSize = 0;
constexpr float kSubsample = 0.8;
constexpr int kSamplingMethod = TrainParam::kGradientBased;
VerifySampling(kPageSize, kSubsample, kSamplingMethod);
}
TEST(GradientBasedSampler, GradientBasedSamplingExternalMemory) {
constexpr size_t kPageSize = 1024;
constexpr float kSubsample = 0.8;
constexpr int kSamplingMethod = TrainParam::kGradientBased;
constexpr bool kFixedSizeSampling = false;
VerifySampling(kPageSize, kSubsample, kSamplingMethod, kFixedSizeSampling);
}
}; // namespace tree
}; // namespace xgboost