* Add num target model parameter, which is configured from input labels. * Change elementwise metric and indexing for weights. * Add demo. * Add tests.
342 lines
12 KiB
Python
342 lines
12 KiB
Python
import numpy as np
|
|
import xgboost as xgb
|
|
import sys
|
|
import pytest
|
|
|
|
sys.path.append("tests/python")
|
|
import testing as tm
|
|
from test_dmatrix import set_base_margin_info
|
|
|
|
|
|
def dmatrix_from_cudf(input_type, DMatrixT, missing=np.NAN):
|
|
'''Test constructing DMatrix from cudf'''
|
|
import cudf
|
|
import pandas as pd
|
|
|
|
kRows = 80
|
|
kCols = 3
|
|
|
|
na = np.random.randn(kRows, kCols)
|
|
na[:, 0:2] = na[:, 0:2].astype(input_type)
|
|
|
|
na[5, 0] = missing
|
|
na[3, 1] = missing
|
|
|
|
pa = pd.DataFrame({'0': na[:, 0],
|
|
'1': na[:, 1],
|
|
'2': na[:, 2].astype(np.int32)})
|
|
|
|
np_label = np.random.randn(kRows).astype(input_type)
|
|
pa_label = pd.DataFrame(np_label)
|
|
|
|
cd = cudf.from_pandas(pa)
|
|
cd_label = cudf.from_pandas(pa_label).iloc[:, 0]
|
|
|
|
dtrain = DMatrixT(cd, missing=missing, label=cd_label)
|
|
assert dtrain.num_col() == kCols
|
|
assert dtrain.num_row() == kRows
|
|
|
|
|
|
def _test_from_cudf(DMatrixT):
|
|
'''Test constructing DMatrix from cudf'''
|
|
import cudf
|
|
dmatrix_from_cudf(np.float32, DMatrixT, np.NAN)
|
|
dmatrix_from_cudf(np.float64, DMatrixT, np.NAN)
|
|
|
|
dmatrix_from_cudf(np.int8, DMatrixT, 2)
|
|
dmatrix_from_cudf(np.int32, DMatrixT, -2)
|
|
dmatrix_from_cudf(np.int64, DMatrixT, -3)
|
|
|
|
cd = cudf.DataFrame({'x': [1, 2, 3], 'y': [0.1, 0.2, 0.3]})
|
|
dtrain = DMatrixT(cd)
|
|
|
|
assert dtrain.feature_names == ['x', 'y']
|
|
assert dtrain.feature_types == ['int', 'float']
|
|
|
|
series = cudf.DataFrame({'x': [1, 2, 3]}).iloc[:, 0]
|
|
assert isinstance(series, cudf.Series)
|
|
dtrain = DMatrixT(series)
|
|
|
|
assert dtrain.feature_names == ['x']
|
|
assert dtrain.feature_types == ['int']
|
|
|
|
with pytest.raises(ValueError, match=r".*multi.*"):
|
|
dtrain = DMatrixT(cd, label=cd)
|
|
xgb.train({"tree_method": "gpu_hist", "objective": "multi:softprob"}, dtrain)
|
|
|
|
# Test when number of elements is less than 8
|
|
X = cudf.DataFrame({'x': cudf.Series([0, 1, 2, np.NAN, 4],
|
|
dtype=np.int32)})
|
|
dtrain = DMatrixT(X)
|
|
assert dtrain.num_col() == 1
|
|
assert dtrain.num_row() == 5
|
|
|
|
# Boolean is not supported.
|
|
X_boolean = cudf.DataFrame({'x': cudf.Series([True, False])})
|
|
with pytest.raises(Exception):
|
|
dtrain = DMatrixT(X_boolean)
|
|
|
|
y_boolean = cudf.DataFrame({
|
|
'x': cudf.Series([True, False, True, True, True])})
|
|
with pytest.raises(Exception):
|
|
dtrain = DMatrixT(X_boolean, label=y_boolean)
|
|
|
|
|
|
def _test_cudf_training(DMatrixT):
|
|
from cudf import DataFrame as df
|
|
import pandas as pd
|
|
np.random.seed(1)
|
|
X = pd.DataFrame(np.random.randn(50, 10))
|
|
y = pd.DataFrame(np.random.randn(50))
|
|
weights = np.random.random(50) + 1.0
|
|
cudf_weights = df.from_pandas(pd.DataFrame(weights))
|
|
base_margin = np.random.random(50)
|
|
cudf_base_margin = df.from_pandas(pd.DataFrame(base_margin))
|
|
|
|
evals_result_cudf = {}
|
|
dtrain_cudf = DMatrixT(df.from_pandas(X), df.from_pandas(y), weight=cudf_weights,
|
|
base_margin=cudf_base_margin)
|
|
params = {'gpu_id': 0, 'tree_method': 'gpu_hist'}
|
|
xgb.train(params, dtrain_cudf, evals=[(dtrain_cudf, "train")],
|
|
evals_result=evals_result_cudf)
|
|
evals_result_np = {}
|
|
dtrain_np = xgb.DMatrix(X, y, weight=weights, base_margin=base_margin)
|
|
xgb.train(params, dtrain_np, evals=[(dtrain_np, "train")],
|
|
evals_result=evals_result_np)
|
|
assert np.array_equal(evals_result_cudf["train"]["rmse"], evals_result_np["train"]["rmse"])
|
|
|
|
|
|
def _test_cudf_metainfo(DMatrixT):
|
|
from cudf import DataFrame as df
|
|
import pandas as pd
|
|
n = 100
|
|
X = np.random.random((n, 2))
|
|
dmat_cudf = DMatrixT(df.from_pandas(pd.DataFrame(X)))
|
|
dmat = xgb.DMatrix(X)
|
|
floats = np.random.random(n)
|
|
uints = np.array([4, 2, 8]).astype("uint32")
|
|
cudf_floats = df.from_pandas(pd.DataFrame(floats))
|
|
cudf_uints = df.from_pandas(pd.DataFrame(uints))
|
|
dmat.set_float_info('weight', floats)
|
|
dmat.set_float_info('label', floats)
|
|
dmat.set_float_info('base_margin', floats)
|
|
dmat.set_uint_info('group', uints)
|
|
dmat_cudf.set_info(weight=cudf_floats)
|
|
dmat_cudf.set_info(label=cudf_floats)
|
|
dmat_cudf.set_info(base_margin=cudf_floats)
|
|
dmat_cudf.set_info(group=cudf_uints)
|
|
|
|
# Test setting info with cudf DataFrame
|
|
assert np.array_equal(dmat.get_float_info('weight'), dmat_cudf.get_float_info('weight'))
|
|
assert np.array_equal(dmat.get_float_info('label'), dmat_cudf.get_float_info('label'))
|
|
assert np.array_equal(dmat.get_float_info('base_margin'),
|
|
dmat_cudf.get_float_info('base_margin'))
|
|
assert np.array_equal(dmat.get_uint_info('group_ptr'), dmat_cudf.get_uint_info('group_ptr'))
|
|
|
|
# Test setting info with cudf Series
|
|
dmat_cudf.set_info(weight=cudf_floats[cudf_floats.columns[0]])
|
|
dmat_cudf.set_info(label=cudf_floats[cudf_floats.columns[0]])
|
|
dmat_cudf.set_info(base_margin=cudf_floats[cudf_floats.columns[0]])
|
|
dmat_cudf.set_info(group=cudf_uints[cudf_uints.columns[0]])
|
|
assert np.array_equal(dmat.get_float_info('weight'), dmat_cudf.get_float_info('weight'))
|
|
assert np.array_equal(dmat.get_float_info('label'), dmat_cudf.get_float_info('label'))
|
|
assert np.array_equal(dmat.get_float_info('base_margin'),
|
|
dmat_cudf.get_float_info('base_margin'))
|
|
assert np.array_equal(dmat.get_uint_info('group_ptr'), dmat_cudf.get_uint_info('group_ptr'))
|
|
|
|
set_base_margin_info(df, DMatrixT, "gpu_hist")
|
|
|
|
|
|
class TestFromColumnar:
|
|
'''Tests for constructing DMatrix from data structure conforming Apache
|
|
Arrow specification.'''
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_simple_dmatrix_from_cudf(self):
|
|
_test_from_cudf(xgb.DMatrix)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_device_dmatrix_from_cudf(self):
|
|
_test_from_cudf(xgb.DeviceQuantileDMatrix)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_cudf_training_simple_dmatrix(self):
|
|
_test_cudf_training(xgb.DMatrix)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_cudf_training_device_dmatrix(self):
|
|
_test_cudf_training(xgb.DeviceQuantileDMatrix)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_cudf_metainfo_simple_dmatrix(self):
|
|
_test_cudf_metainfo(xgb.DMatrix)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_cudf_metainfo_device_dmatrix(self):
|
|
_test_cudf_metainfo(xgb.DeviceQuantileDMatrix)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_cudf_categorical(self):
|
|
import cudf
|
|
_X, _y = tm.make_categorical(100, 30, 17, False)
|
|
X = cudf.from_pandas(_X)
|
|
y = cudf.from_pandas(_y)
|
|
|
|
Xy = xgb.DMatrix(X, y, enable_categorical=True)
|
|
assert len(Xy.feature_types) == X.shape[1]
|
|
assert all(t == "c" for t in Xy.feature_types)
|
|
|
|
Xy = xgb.DeviceQuantileDMatrix(X, y, enable_categorical=True)
|
|
assert len(Xy.feature_types) == X.shape[1]
|
|
assert all(t == "c" for t in Xy.feature_types)
|
|
|
|
# test missing value
|
|
X = cudf.DataFrame({"f0": ["a", "b", np.NaN]})
|
|
X["f0"] = X["f0"].astype("category")
|
|
df, cat_codes, _, _ = xgb.data._transform_cudf_df(
|
|
X, None, None, enable_categorical=True
|
|
)
|
|
for col in cat_codes:
|
|
assert col.has_nulls
|
|
|
|
y = [0, 1, 2]
|
|
with pytest.raises(ValueError):
|
|
xgb.DMatrix(X, y)
|
|
Xy = xgb.DMatrix(X, y, enable_categorical=True)
|
|
assert Xy.num_row() == 3
|
|
assert Xy.num_col() == 1
|
|
|
|
with pytest.raises(ValueError):
|
|
xgb.DeviceQuantileDMatrix(X, y)
|
|
|
|
Xy = xgb.DeviceQuantileDMatrix(X, y, enable_categorical=True)
|
|
assert Xy.num_row() == 3
|
|
assert Xy.num_col() == 1
|
|
|
|
X = X["f0"]
|
|
with pytest.raises(ValueError):
|
|
xgb.DMatrix(X, y)
|
|
|
|
Xy = xgb.DMatrix(X, y, enable_categorical=True)
|
|
assert Xy.num_row() == 3
|
|
assert Xy.num_col() == 1
|
|
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
@pytest.mark.skipif(**tm.no_cupy())
|
|
@pytest.mark.skipif(**tm.no_sklearn())
|
|
@pytest.mark.skipif(**tm.no_pandas())
|
|
def test_cudf_training_with_sklearn():
|
|
from cudf import DataFrame as df
|
|
from cudf import Series as ss
|
|
import pandas as pd
|
|
np.random.seed(1)
|
|
X = pd.DataFrame(np.random.randn(50, 10))
|
|
y = pd.DataFrame((np.random.randn(50) > 0).astype(np.int8))
|
|
weights = np.random.random(50) + 1.0
|
|
cudf_weights = df.from_pandas(pd.DataFrame(weights))
|
|
base_margin = np.random.random(50)
|
|
cudf_base_margin = df.from_pandas(pd.DataFrame(base_margin))
|
|
|
|
X_cudf = df.from_pandas(X)
|
|
y_cudf = df.from_pandas(y)
|
|
y_cudf_series = ss(data=y.iloc[:, 0])
|
|
|
|
for y_obj in [y_cudf, y_cudf_series]:
|
|
clf = xgb.XGBClassifier(gpu_id=0, tree_method='gpu_hist')
|
|
clf.fit(X_cudf, y_obj, sample_weight=cudf_weights, base_margin=cudf_base_margin,
|
|
eval_set=[(X_cudf, y_obj)])
|
|
pred = clf.predict(X_cudf)
|
|
assert np.array_equal(np.unique(pred), np.array([0, 1]))
|
|
|
|
|
|
class IterForDMatrixTest(xgb.core.DataIter):
|
|
'''A data iterator for XGBoost DMatrix.
|
|
|
|
`reset` and `next` are required for any data iterator, other functions here
|
|
are utilites for demonstration's purpose.
|
|
|
|
'''
|
|
ROWS_PER_BATCH = 100 # data is splited by rows
|
|
BATCHES = 16
|
|
|
|
def __init__(self, categorical):
|
|
'''Generate some random data for demostration.
|
|
|
|
Actual data can be anything that is currently supported by XGBoost.
|
|
'''
|
|
import cudf
|
|
self.rows = self.ROWS_PER_BATCH
|
|
|
|
if categorical:
|
|
self._data = []
|
|
self._labels = []
|
|
for i in range(self.BATCHES):
|
|
X, y = tm.make_categorical(self.ROWS_PER_BATCH, 4, 13, False)
|
|
self._data.append(cudf.from_pandas(X))
|
|
self._labels.append(y)
|
|
else:
|
|
rng = np.random.RandomState(1994)
|
|
self._data = [
|
|
cudf.DataFrame(
|
|
{'a': rng.randn(self.ROWS_PER_BATCH),
|
|
'b': rng.randn(self.ROWS_PER_BATCH)})] * self.BATCHES
|
|
self._labels = [rng.randn(self.rows)] * self.BATCHES
|
|
|
|
self.it = 0 # set iterator to 0
|
|
super().__init__()
|
|
|
|
def as_array(self):
|
|
import cudf
|
|
return cudf.concat(self._data)
|
|
|
|
def as_array_labels(self):
|
|
return np.concatenate(self._labels)
|
|
|
|
def data(self):
|
|
'''Utility function for obtaining current batch of data.'''
|
|
return self._data[self.it]
|
|
|
|
def labels(self):
|
|
'''Utility function for obtaining current batch of label.'''
|
|
return self._labels[self.it]
|
|
|
|
def reset(self):
|
|
'''Reset the iterator'''
|
|
self.it = 0
|
|
|
|
def next(self, input_data):
|
|
'''Yield next batch of data'''
|
|
if self.it == len(self._data):
|
|
# Return 0 when there's no more batch.
|
|
return 0
|
|
input_data(data=self.data(), label=self.labels())
|
|
self.it += 1
|
|
return 1
|
|
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
@pytest.mark.parametrize("enable_categorical", [True, False])
|
|
def test_from_cudf_iter(enable_categorical):
|
|
rounds = 100
|
|
it = IterForDMatrixTest(enable_categorical)
|
|
params = {"tree_method": "gpu_hist"}
|
|
|
|
# Use iterator
|
|
m_it = xgb.DeviceQuantileDMatrix(it, enable_categorical=enable_categorical)
|
|
reg_with_it = xgb.train(params, m_it, num_boost_round=rounds)
|
|
|
|
X = it.as_array()
|
|
y = it.as_array_labels()
|
|
|
|
m = xgb.DMatrix(X, y, enable_categorical=enable_categorical)
|
|
|
|
assert m_it.num_col() == m.num_col()
|
|
assert m_it.num_row() == m.num_row()
|
|
|
|
reg = xgb.train(params, m, num_boost_round=rounds)
|
|
|
|
predict = reg.predict(m)
|
|
predict_with_it = reg_with_it.predict(m_it)
|
|
np.testing.assert_allclose(predict_with_it, predict)
|