xgboost/src/tree/gpu_hist/evaluate_splits.cu
Hendrik Groove cbaf5511ac test
2024-10-22 00:51:34 +02:00

514 lines
23 KiB
Plaintext

/**
* Copyright 2020-2023, XGBoost Contributors
*/
#include <algorithm> // std::max
#include <vector>
#include <limits>
#include "../../collective/communicator-inl.cuh"
#include "../../common/categorical.h"
#include "../../data/ellpack_page.cuh"
#include "evaluate_splits.cuh"
#include "expand_entry.cuh"
#if defined(XGBOOST_USE_CUDA)
#define WARP_SIZE 32
#elif defined(XGBOOST_USE_HIP)
#include <hip/hip_cooperative_groups.h>
#ifdef __AMDGCN_WAVEFRONT_SIZE
#undef WAVEFRONT_SIZE
#define WAVEFRONT_SIZE __AMDGCN_WAVEFRONT_SIZE
#endif
#define WARP_SIZE 32
#endif
namespace xgboost::tree {
// With constraints
XGBOOST_DEVICE float LossChangeMissing(const GradientPairInt64 &scan,
const GradientPairInt64 &missing,
const GradientPairInt64 &parent_sum,
const GPUTrainingParam &param, bst_node_t nidx,
bst_feature_t fidx,
TreeEvaluator::SplitEvaluator<GPUTrainingParam> evaluator,
bool &missing_left_out, const GradientQuantiser& quantiser) { // NOLINT
const auto left_sum = scan + missing;
float missing_left_gain = evaluator.CalcSplitGain(
param, nidx, fidx, quantiser.ToFloatingPoint(left_sum),
quantiser.ToFloatingPoint(parent_sum - left_sum));
float missing_right_gain = evaluator.CalcSplitGain(
param, nidx, fidx, quantiser.ToFloatingPoint(scan),
quantiser.ToFloatingPoint(parent_sum - scan));
missing_left_out = missing_left_gain > missing_right_gain;
return missing_left_out?missing_left_gain:missing_right_gain;
}
// This kernel uses block_size == warp_size. This is an unusually small block size for a cuda kernel
// - normally a larger block size is preferred to increase the number of resident warps on each SM
// (occupancy). In the below case each thread has a very large amount of work per thread relative to
// typical cuda kernels. Thus the SM can be highly utilised by a small number of threads. It was
// discovered by experiments that a small block size here is significantly faster. Furthermore,
// using only a single warp, synchronisation barriers are eliminated and broadcasts can be performed
// using warp intrinsics instead of slower shared memory.
template <int kBlockSize>
class EvaluateSplitAgent {
public:
using ArgMaxT = cub::KeyValuePair<int, float>;
using BlockScanT = cub::BlockScan<GradientPairInt64, kBlockSize>;
using MaxReduceT = cub::WarpReduce<ArgMaxT>;
using SumReduceT = cub::WarpReduce<GradientPairInt64>;
struct TempStorage {
typename BlockScanT::TempStorage scan;
typename MaxReduceT::TempStorage max_reduce;
typename SumReduceT::TempStorage sum_reduce;
};
const int fidx;
const int nidx;
const float min_fvalue;
const uint32_t gidx_begin; // beginning bin
const uint32_t gidx_end; // end bin for i^th feature
const dh::LDGIterator<float> feature_values;
const GradientPairInt64 *node_histogram;
const GradientQuantiser &rounding;
const GradientPairInt64 parent_sum;
const GradientPairInt64 missing;
const GPUTrainingParam &param;
const TreeEvaluator::SplitEvaluator<GPUTrainingParam> &evaluator;
TempStorage *temp_storage;
SumCallbackOp<GradientPairInt64> prefix_op;
static float constexpr kNullGain = -std::numeric_limits<bst_float>::infinity();
__device__ EvaluateSplitAgent(
TempStorage *temp_storage, int fidx, const EvaluateSplitInputs &inputs,
const EvaluateSplitSharedInputs &shared_inputs,
const TreeEvaluator::SplitEvaluator<GPUTrainingParam> &evaluator)
: temp_storage(temp_storage), nidx(inputs.nidx), fidx(fidx),
min_fvalue(__ldg(shared_inputs.min_fvalue.data() + fidx)),
gidx_begin(__ldg(shared_inputs.feature_segments.data() + fidx)),
gidx_end(__ldg(shared_inputs.feature_segments.data() + fidx + 1)),
feature_values(shared_inputs.feature_values.data()),
node_histogram(inputs.gradient_histogram.data()),
rounding(shared_inputs.rounding),
parent_sum(dh::LDGIterator<GradientPairInt64>(&inputs.parent_sum)[0]),
param(shared_inputs.param), evaluator(evaluator),
missing(parent_sum - ReduceFeature()) {
static_assert(
kBlockSize == WARP_SIZE,
"This kernel relies on the assumption block_size == warp_size");
// There should be no missing value gradients for a dense matrix
KERNEL_CHECK(!shared_inputs.is_dense || missing.GetQuantisedHess() == 0);
}
__device__ GradientPairInt64 ReduceFeature() {
GradientPairInt64 local_sum;
for (int idx = gidx_begin + threadIdx.x; idx < gidx_end;
idx += kBlockSize) {
local_sum += LoadGpair(node_histogram + idx);
}
local_sum = SumReduceT(temp_storage->sum_reduce).Sum(local_sum); // NOLINT
// Broadcast result from thread 0
#if defined(XGBOOST_USE_CUDA)
return {__shfl_sync(0xffffffff, local_sum.GetQuantisedGrad(), 0),
__shfl_sync(0xffffffff, local_sum.GetQuantisedHess(), 0)};
#elif defined(XGBOOST_USE_HIP)
return {__shfl(local_sum.GetQuantisedGrad(), 0),
__shfl(local_sum.GetQuantisedHess(), 0)};
#endif
}
// Load using efficient 128 vector load instruction
__device__ __forceinline__ GradientPairInt64 LoadGpair(const GradientPairInt64 *ptr) {
float4 tmp = *reinterpret_cast<const float4 *>(ptr);
auto gpair = *reinterpret_cast<const GradientPairInt64 *>(&tmp);
static_assert(sizeof(decltype(gpair)) == sizeof(float4),
"Vector type size does not match gradient pair size.");
return gpair;
}
__device__ __forceinline__ void Numerical(DeviceSplitCandidate *__restrict__ best_split) {
for (int scan_begin = gidx_begin; scan_begin < gidx_end; scan_begin += kBlockSize) {
bool thread_active = (scan_begin + threadIdx.x) < gidx_end;
GradientPairInt64 bin = thread_active ? LoadGpair(node_histogram + scan_begin + threadIdx.x)
: GradientPairInt64();
BlockScanT(temp_storage->scan).ExclusiveScan(bin, bin, cub::Sum(), prefix_op);
// Whether the gradient of missing values is put to the left side.
bool missing_left = true;
float gain = thread_active ? LossChangeMissing(bin, missing, parent_sum, param, nidx, fidx,
evaluator, missing_left, rounding)
: kNullGain;
// Find thread with best gain
auto best = MaxReduceT(temp_storage->max_reduce).Reduce({(int)threadIdx.x, gain}, cub::ArgMax());
// This reduce result is only valid in thread 0
// broadcast to the rest of the warp
#if defined(XGBOOST_USE_CUDA)
auto best_thread = __shfl_sync(0xffffffff, best.key, 0);
#elif defined(XGBOOST_USE_HIP)
auto best_thread = __shfl(best.key, 0);
#endif
// Best thread updates the split
if (threadIdx.x == best_thread) {
// Use pointer from cut to indicate begin and end of bins for each feature.
int split_gidx = (scan_begin + threadIdx.x) - 1;
float fvalue =
split_gidx < static_cast<int>(gidx_begin) ? min_fvalue : feature_values[split_gidx];
GradientPairInt64 left = missing_left ? bin + missing : bin;
GradientPairInt64 right = parent_sum - left;
best_split->Update(gain, missing_left ? kLeftDir : kRightDir, fvalue, fidx, left, right,
false, param, rounding);
}
}
}
__device__ __forceinline__ void OneHot(DeviceSplitCandidate *__restrict__ best_split) {
for (int scan_begin = gidx_begin; scan_begin < gidx_end; scan_begin += kBlockSize) {
bool thread_active = (scan_begin + threadIdx.x) < gidx_end;
auto rest = thread_active ? LoadGpair(node_histogram + scan_begin + threadIdx.x)
: GradientPairInt64();
GradientPairInt64 bin = parent_sum - rest - missing;
// Whether the gradient of missing values is put to the left side.
bool missing_left = true;
float gain = thread_active ? LossChangeMissing(bin, missing, parent_sum, param, nidx, fidx,
evaluator, missing_left, rounding)
: kNullGain;
// Find thread with best gain
auto best = MaxReduceT(temp_storage->max_reduce).Reduce({(int)threadIdx.x, gain}, cub::ArgMax());
// This reduce result is only valid in thread 0
// broadcast to the rest of the warp
#if defined(XGBOOST_USE_CUDA)
auto best_thread = __shfl_sync(0xffffffff, best.key, 0);
#elif defined(XGBOOST_USE_HIP)
auto best_thread = __shfl(best.key, 0);
#endif
// Best thread updates the split
if (threadIdx.x == best_thread) {
int32_t split_gidx = (scan_begin + threadIdx.x);
float fvalue = feature_values[split_gidx];
GradientPairInt64 left = missing_left ? bin + missing : bin;
GradientPairInt64 right = parent_sum - left;
best_split->UpdateCat(gain, missing_left ? kLeftDir : kRightDir,
static_cast<bst_cat_t>(fvalue), fidx, left, right, param, rounding);
}
}
}
/**
* \brief Gather and update the best split.
*/
__device__ __forceinline__ void PartitionUpdate(bst_bin_t scan_begin, bool thread_active,
bool missing_left, bst_bin_t it,
GradientPairInt64 const &left_sum,
GradientPairInt64 const &right_sum,
DeviceSplitCandidate *__restrict__ best_split) {
auto gain = thread_active
? evaluator.CalcSplitGain(param, nidx, fidx, rounding.ToFloatingPoint(left_sum),
rounding.ToFloatingPoint(right_sum))
: kNullGain;
// Find thread with best gain
auto best = MaxReduceT(temp_storage->max_reduce).Reduce({(int)threadIdx.x, gain}, cub::ArgMax());
// This reduce result is only valid in thread 0
// broadcast to the rest of the warp
#if defined(XGBOOST_USE_CUDA)
auto best_thread = __shfl_sync(0xffffffff, best.key, 0);
#elif defined(XGBOOST_USE_HIP)
auto best_thread = __shfl(best.key, 0);
#endif
// Best thread updates the split
if (threadIdx.x == best_thread) {
assert(thread_active);
// index of best threshold inside a feature.
auto best_thresh = it - gidx_begin;
best_split->UpdateCat(gain, missing_left ? kLeftDir : kRightDir, best_thresh, fidx, left_sum,
right_sum, param, rounding);
}
}
/**
* \brief Partition-based split for categorical feature.
*/
__device__ __forceinline__ void Partition(DeviceSplitCandidate *__restrict__ best_split,
common::Span<bst_feature_t> sorted_idx,
std::size_t node_offset,
GPUTrainingParam const &param) {
bst_bin_t n_bins_feature = gidx_end - gidx_begin;
auto n_bins = std::min(param.max_cat_threshold, n_bins_feature);
bst_bin_t it_begin = gidx_begin;
bst_bin_t it_end = it_begin + n_bins - 1;
// forward
for (bst_bin_t scan_begin = it_begin; scan_begin < it_end; scan_begin += kBlockSize) {
auto it = scan_begin + static_cast<bst_bin_t>(threadIdx.x);
bool thread_active = it < it_end;
auto right_sum = thread_active ? LoadGpair(node_histogram + sorted_idx[it] - node_offset)
: GradientPairInt64();
// No min value for cat feature, use inclusive scan.
BlockScanT(temp_storage->scan).InclusiveSum(right_sum, right_sum, prefix_op);
GradientPairInt64 left_sum = parent_sum - right_sum;
PartitionUpdate(scan_begin, thread_active, true, it, left_sum, right_sum, best_split);
}
// backward
it_begin = gidx_end - 1;
it_end = it_begin - n_bins + 1;
prefix_op = SumCallbackOp<GradientPairInt64>{}; // reset
for (bst_bin_t scan_begin = it_begin; scan_begin > it_end; scan_begin -= kBlockSize) {
auto it = scan_begin - static_cast<bst_bin_t>(threadIdx.x);
bool thread_active = it > it_end;
auto left_sum = thread_active ? LoadGpair(node_histogram + sorted_idx[it] - node_offset)
: GradientPairInt64();
// No min value for cat feature, use inclusive scan.
BlockScanT(temp_storage->scan).InclusiveSum(left_sum, left_sum, prefix_op);
GradientPairInt64 right_sum = parent_sum - left_sum;
PartitionUpdate(scan_begin, thread_active, false, it, left_sum, right_sum, best_split);
}
}
};
template <int kBlockSize>
__global__ __launch_bounds__(kBlockSize) void EvaluateSplitsKernel(
bst_feature_t max_active_features,
common::Span<const EvaluateSplitInputs> d_inputs,
const EvaluateSplitSharedInputs shared_inputs,
common::Span<bst_feature_t> sorted_idx,
const TreeEvaluator::SplitEvaluator<GPUTrainingParam> evaluator,
common::Span<DeviceSplitCandidate> out_candidates) {
// Aligned && shared storage for best_split
__shared__ cub::Uninitialized<DeviceSplitCandidate> uninitialized_split;
DeviceSplitCandidate &best_split = uninitialized_split.Alias();
if (threadIdx.x == 0) {
best_split = DeviceSplitCandidate();
}
__syncthreads();
// Allocate blocks to one feature of one node
const auto input_idx = blockIdx.x / max_active_features;
const EvaluateSplitInputs &inputs = d_inputs[input_idx];
// One block for each feature. Features are sampled, so fidx != blockIdx.x
// Some blocks may not have any feature to work on, simply return
int feature_offset = blockIdx.x % max_active_features;
if (feature_offset >= inputs.feature_set.size()) {
return;
}
int fidx = inputs.feature_set[feature_offset];
using AgentT = EvaluateSplitAgent<kBlockSize>;
__shared__ typename AgentT::TempStorage temp_storage;
AgentT agent(&temp_storage, fidx, inputs, shared_inputs, evaluator);
if (common::IsCat(shared_inputs.feature_types, fidx)) {
auto n_bins_in_feat =
shared_inputs.feature_segments[fidx + 1] - shared_inputs.feature_segments[fidx];
if (common::UseOneHot(n_bins_in_feat, shared_inputs.param.max_cat_to_onehot)) {
agent.OneHot(&best_split);
} else {
auto total_bins = shared_inputs.feature_values.size();
size_t offset = total_bins * input_idx;
auto node_sorted_idx = sorted_idx.subspan(offset, total_bins);
agent.Partition(&best_split, node_sorted_idx, offset, shared_inputs.param);
}
} else {
agent.Numerical(&best_split);
}
cub::CTA_SYNC();
if (threadIdx.x == 0) {
// Record best loss for each feature
out_candidates[blockIdx.x] = best_split;
}
}
__device__ DeviceSplitCandidate operator+(const DeviceSplitCandidate &a,
const DeviceSplitCandidate &b) {
return b.loss_chg > a.loss_chg ? b : a;
}
/**
* \brief Set the bits for categorical splits based on the split threshold.
*/
__device__ void SetCategoricalSplit(const EvaluateSplitSharedInputs &shared_inputs,
common::Span<bst_feature_t const> d_sorted_idx,
bst_feature_t fidx, std::size_t input_idx,
common::Span<common::CatBitField::value_type> out,
DeviceSplitCandidate *p_out_split) {
auto &out_split = *p_out_split;
auto out_cats = common::CatBitField{out};
// Simple case for one hot split
if (common::UseOneHot(shared_inputs.FeatureBins(fidx), shared_inputs.param.max_cat_to_onehot)) {
out_cats.Set(common::AsCat(out_split.thresh));
return;
}
// partition-based split
auto node_sorted_idx = d_sorted_idx.subspan(shared_inputs.feature_values.size() * input_idx,
shared_inputs.feature_values.size());
size_t node_offset = input_idx * shared_inputs.feature_values.size();
auto const best_thresh = out_split.thresh;
if (best_thresh == -1) {
return;
}
auto f_sorted_idx = node_sorted_idx.subspan(shared_inputs.feature_segments[fidx],
shared_inputs.FeatureBins(fidx));
bool forward = out_split.dir == kLeftDir;
bst_bin_t partition = forward ? best_thresh + 1 : best_thresh;
auto beg = dh::tcbegin(f_sorted_idx);
assert(partition > 0 && "Invalid partition.");
thrust::for_each(thrust::seq, beg, beg + partition, [&](size_t c) {
auto cat = shared_inputs.feature_values[c - node_offset];
out_cats.Set(common::AsCat(cat));
});
}
void GPUHistEvaluator::LaunchEvaluateSplits(
bst_feature_t max_active_features,
common::Span<const EvaluateSplitInputs> d_inputs,
EvaluateSplitSharedInputs shared_inputs,
TreeEvaluator::SplitEvaluator<GPUTrainingParam> evaluator,
common::Span<DeviceSplitCandidate> out_splits) {
if (need_sort_histogram_) {
this->SortHistogram(d_inputs, shared_inputs, evaluator);
}
size_t combined_num_features = max_active_features * d_inputs.size();
dh::TemporaryArray<DeviceSplitCandidate> feature_best_splits(
combined_num_features, DeviceSplitCandidate());
// One block for each feature
uint32_t constexpr kBlockThreads = WARP_SIZE;
dh::LaunchKernel {static_cast<uint32_t>(combined_num_features), kBlockThreads,
0}(
EvaluateSplitsKernel<kBlockThreads>, max_active_features, d_inputs,
shared_inputs,
this->SortedIdx(d_inputs.size(), shared_inputs.feature_values.size()),
evaluator, dh::ToSpan(feature_best_splits));
// Reduce to get best candidate for left and right child over all features
auto reduce_offset =
dh::MakeTransformIterator<size_t>(thrust::make_counting_iterator(0llu),
[=] __device__(size_t idx) -> size_t {
return idx * max_active_features;
});
size_t temp_storage_bytes = 0;
auto num_segments = out_splits.size();
cub::DeviceSegmentedReduce::Sum(nullptr, temp_storage_bytes, feature_best_splits.data(),
out_splits.data(), num_segments, reduce_offset,
reduce_offset + 1);
dh::TemporaryArray<int8_t> temp(temp_storage_bytes);
cub::DeviceSegmentedReduce::Sum(temp.data().get(), temp_storage_bytes, feature_best_splits.data(),
out_splits.data(), num_segments, reduce_offset,
reduce_offset + 1);
}
void GPUHistEvaluator::CopyToHost(const std::vector<bst_node_t> &nidx) {
if (!has_categoricals_) return;
auto d_cats = this->DeviceCatStorage(nidx);
auto h_cats = this->HostCatStorage(nidx);
dh::CUDAEvent event;
event.Record(dh::DefaultStream());
for (auto idx : nidx) {
copy_stream_.View().Wait(event);
dh::safe_cuda(hipMemcpyAsync(
h_cats.GetNodeCatStorage(idx).data(), d_cats.GetNodeCatStorage(idx).data(),
d_cats.GetNodeCatStorage(idx).size_bytes(), hipMemcpyDeviceToHost, copy_stream_.View()));
}
}
void GPUHistEvaluator::EvaluateSplits(Context const *ctx, const std::vector<bst_node_t> &nidx,
bst_feature_t max_active_features,
common::Span<const EvaluateSplitInputs> d_inputs,
EvaluateSplitSharedInputs shared_inputs,
common::Span<GPUExpandEntry> out_entries) {
auto evaluator = this->tree_evaluator_.template GetEvaluator<GPUTrainingParam>();
dh::TemporaryArray<DeviceSplitCandidate> splits_out_storage(d_inputs.size());
auto out_splits = dh::ToSpan(splits_out_storage);
this->LaunchEvaluateSplits(max_active_features, d_inputs, shared_inputs,
evaluator, out_splits);
if (is_column_split_) {
// With column-wise data split, we gather the split candidates from all the workers and find the
// global best candidates.
auto const world_size = collective::GetWorldSize();
dh::TemporaryArray<DeviceSplitCandidate> all_candidate_storage(out_splits.size() * world_size);
auto all_candidates = dh::ToSpan(all_candidate_storage);
collective::AllGather(device_.ordinal, out_splits.data(), all_candidates.data(),
out_splits.size() * sizeof(DeviceSplitCandidate));
// Reduce to get the best candidate from all workers.
dh::LaunchN(out_splits.size(), ctx->CUDACtx()->Stream(),
[world_size, all_candidates, out_splits] __device__(size_t i) {
out_splits[i] = all_candidates[i];
for (auto rank = 1; rank < world_size; rank++) {
out_splits[i] = out_splits[i] + all_candidates[rank * out_splits.size() + i];
}
});
}
auto d_sorted_idx = this->SortedIdx(d_inputs.size(), shared_inputs.feature_values.size());
auto d_entries = out_entries;
auto device_cats_accessor = this->DeviceCatStorage(nidx);
// turn candidate into entry, along with handling sort based split.
dh::LaunchN(d_inputs.size(), ctx->CUDACtx()->Stream(), [=] __device__(size_t i) mutable {
auto const input = d_inputs[i];
auto &split = out_splits[i];
// Subtract parent gain here
// As it is constant, this is more efficient than doing it during every
// split evaluation
float parent_gain =
CalcGain(shared_inputs.param,
shared_inputs.rounding.ToFloatingPoint(input.parent_sum));
split.loss_chg -= parent_gain;
auto fidx = out_splits[i].findex;
if (split.is_cat) {
SetCategoricalSplit(shared_inputs, d_sorted_idx, fidx, i,
device_cats_accessor.GetNodeCatStorage(input.nidx), &out_splits[i]);
}
float base_weight =
evaluator.CalcWeight(input.nidx, shared_inputs.param,
shared_inputs.rounding.ToFloatingPoint(
split.left_sum + split.right_sum));
float left_weight = evaluator.CalcWeight(
input.nidx, shared_inputs.param,
shared_inputs.rounding.ToFloatingPoint(split.left_sum));
float right_weight = evaluator.CalcWeight(
input.nidx, shared_inputs.param,
shared_inputs.rounding.ToFloatingPoint(split.right_sum));
d_entries[i] = GPUExpandEntry{input.nidx, input.depth, out_splits[i],
base_weight, left_weight, right_weight};
});
this->CopyToHost(nidx);
}
GPUExpandEntry GPUHistEvaluator::EvaluateSingleSplit(Context const *ctx, EvaluateSplitInputs input,
EvaluateSplitSharedInputs shared_inputs) {
dh::device_vector<EvaluateSplitInputs> inputs = std::vector<EvaluateSplitInputs>{input};
dh::TemporaryArray<GPUExpandEntry> out_entries(1);
this->EvaluateSplits(ctx, {input.nidx}, input.feature_set.size(), dh::ToSpan(inputs),
shared_inputs, dh::ToSpan(out_entries));
GPUExpandEntry root_entry;
dh::safe_cuda(hipMemcpyAsync(&root_entry, out_entries.data().get(), sizeof(GPUExpandEntry),
hipMemcpyDeviceToHost));
return root_entry;
}
} // namespace xgboost::tree