xgboost/src/common/stats.cu
Jiaming Yuan 28bb01aa22
Extract optional weight. (#8747)
- Extract optional weight from coommon.h to reduce dependency on this header.
- Add test.
2023-02-07 03:11:53 +08:00

66 lines
3.0 KiB
Plaintext

/**
* Copyright 2022-2023 by XGBoost Contributors
*/
#include <thrust/iterator/counting_iterator.h> // thrust::make_counting_iterator
#include <cstddef> // size_t
#include "cuda_context.cuh" // CUDAContext
#include "device_helpers.cuh" // dh::MakeTransformIterator, tcbegin, tcend
#include "optional_weight.h" // common::OptionalWeights
#include "stats.cuh" // common::SegmentedQuantile, common::SegmentedWeightedQuantile
#include "xgboost/base.h" // XGBOOST_DEVICE
#include "xgboost/context.h" // Context
#include "xgboost/host_device_vector.h" // HostDeviceVector
#include "xgboost/linalg.h" // linalg::TensorView, UnravelIndex, Apply
namespace xgboost {
namespace common {
namespace cuda_impl {
void Median(Context const* ctx, linalg::TensorView<float const, 2> t,
common::OptionalWeights weights, linalg::Tensor<float, 1>* out) {
CHECK_GE(t.Shape(1), 1);
HostDeviceVector<std::size_t> segments(t.Shape(1) + 1, 0);
segments.SetDevice(ctx->gpu_id);
auto d_segments = segments.DeviceSpan();
dh::LaunchN(d_segments.size(), ctx->CUDACtx()->Stream(),
[=] XGBOOST_DEVICE(std::size_t i) { d_segments[i] = t.Shape(0) * i; });
auto val_it = dh::MakeTransformIterator<float>(
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(size_t i) {
return linalg::detail::Apply(t, linalg::UnravelIndex(i, t.Shape()));
});
out->SetDevice(ctx->gpu_id);
out->Reshape(t.Shape(1));
if (weights.Empty()) {
common::SegmentedQuantile(ctx, 0.5, dh::tcbegin(d_segments), dh::tcend(d_segments), val_it,
val_it + t.Size(), out->Data());
} else {
CHECK_NE(t.Shape(1), 0);
auto w_it = dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) {
auto sample_idx = i / t.Shape(1);
return weights[sample_idx];
});
common::SegmentedWeightedQuantile(ctx, 0.5, dh::tcbegin(d_segments), dh::tcend(d_segments),
val_it, val_it + t.Size(), w_it, w_it + t.Size(),
out->Data());
}
}
void Mean(Context const* ctx, linalg::VectorView<float const> v, linalg::VectorView<float> out) {
float n = v.Size();
auto it = dh::MakeTransformIterator<float>(
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(std::size_t i) { return v(i) / n; });
std::size_t bytes;
CHECK_EQ(out.Size(), 1);
auto s = ctx->CUDACtx()->Stream();
cub::DeviceReduce::Sum(nullptr, bytes, it, out.Values().data(), v.Size(), s);
dh::TemporaryArray<char> temp{bytes};
cub::DeviceReduce::Sum(temp.data().get(), bytes, it, out.Values().data(), v.Size(), s);
}
} // namespace cuda_impl
} // namespace common
} // namespace xgboost