xgboost/tests/python/test_survival.py
2023-06-27 23:04:24 +08:00

169 lines
5.8 KiB
Python

import json
import os
from typing import List, Optional, Tuple, cast
import numpy as np
import pytest
import xgboost as xgb
from xgboost import testing as tm
dpath = tm.data_dir(__file__)
@pytest.fixture(scope="module")
def toy_data() -> Tuple[xgb.DMatrix, np.ndarray, np.ndarray]:
X = np.array([1, 2, 3, 4, 5]).reshape((-1, 1))
INF = np.inf
y_lower = np.array([10, 15, -INF, 30, 100])
y_upper = np.array([INF, INF, 20, 50, INF])
dmat = xgb.DMatrix(X)
dmat.set_float_info("label_lower_bound", y_lower)
dmat.set_float_info("label_upper_bound", y_upper)
return dmat, y_lower, y_upper
def test_default_metric(toy_data: Tuple[xgb.DMatrix, np.ndarray, np.ndarray]) -> None:
Xy, y_lower, y_upper = toy_data
def run(evals: Optional[list]) -> None:
# test with or without actual evaluation.
booster = xgb.train(
{"objective": "survival:aft", "aft_loss_distribution": "extreme"},
Xy,
num_boost_round=1,
evals=evals,
)
config = json.loads(booster.save_config())
metrics = config["learner"]["metrics"]
assert len(metrics) == 1
assert metrics[0]["aft_loss_param"]["aft_loss_distribution"] == "extreme"
booster = xgb.train(
{"objective": "survival:aft"},
Xy,
num_boost_round=1,
evals=evals,
)
config = json.loads(booster.save_config())
metrics = config["learner"]["metrics"]
assert len(metrics) == 1
assert metrics[0]["aft_loss_param"]["aft_loss_distribution"] == "normal"
run([(Xy, "Train")])
run(None)
def test_aft_survival_toy_data(
toy_data: Tuple[xgb.DMatrix, np.ndarray, np.ndarray]
) -> None:
# See demo/aft_survival/aft_survival_viz_demo.py
X = np.array([1, 2, 3, 4, 5]).reshape((-1, 1))
dmat, y_lower, y_upper = toy_data
# "Accuracy" = the number of data points whose ranged label (y_lower, y_upper)
# includes the corresponding predicted label (y_pred)
acc_rec = []
class Callback(xgb.callback.TrainingCallback):
def __init__(self):
super().__init__()
def after_iteration(
self,
model: xgb.Booster,
epoch: int,
evals_log: xgb.callback.TrainingCallback.EvalsLog,
):
y_pred = model.predict(dmat)
acc = np.sum(np.logical_and(y_pred >= y_lower, y_pred <= y_upper) / len(X))
acc_rec.append(acc)
return False
evals_result: xgb.callback.TrainingCallback.EvalsLog = {}
params = {
"max_depth": 3,
"objective": "survival:aft",
"min_child_weight": 0,
"tree_method": "exact",
}
bst = xgb.train(
params,
dmat,
15,
[(dmat, "train")],
evals_result=evals_result,
callbacks=[Callback()],
)
nloglik_rec = cast(List[float], evals_result["train"]["aft-nloglik"])
# AFT metric (negative log likelihood) improve monotonically
assert all(p >= q for p, q in zip(nloglik_rec, nloglik_rec[:1]))
# "Accuracy" improve monotonically.
# Over time, XGBoost model makes predictions that fall within given label ranges.
assert all(p <= q for p, q in zip(acc_rec, acc_rec[1:]))
assert acc_rec[-1] == 1.0
def gather_split_thresholds(tree):
if "split_condition" in tree:
return (
gather_split_thresholds(tree["children"][0])
| gather_split_thresholds(tree["children"][1])
| {tree["split_condition"]}
)
return set()
# Only 2.5, 3.5, and 4.5 are used as split thresholds.
model_json = [json.loads(e) for e in bst.get_dump(dump_format="json")]
for i, tree in enumerate(model_json):
assert gather_split_thresholds(tree).issubset({2.5, 3.5, 4.5})
def test_aft_empty_dmatrix():
X = np.array([]).reshape((0, 2))
y_lower, y_upper = np.array([]), np.array([])
dtrain = xgb.DMatrix(X)
dtrain.set_info(label_lower_bound=y_lower, label_upper_bound=y_upper)
bst = xgb.train({'objective': 'survival:aft', 'tree_method': 'hist'},
dtrain, num_boost_round=2, evals=[(dtrain, 'train')])
@pytest.mark.skipif(**tm.no_pandas())
def test_aft_survival_demo_data():
import pandas as pd
df = pd.read_csv(os.path.join(dpath, 'veterans_lung_cancer.csv'))
y_lower_bound = df['Survival_label_lower_bound']
y_upper_bound = df['Survival_label_upper_bound']
X = df.drop(['Survival_label_lower_bound', 'Survival_label_upper_bound'], axis=1)
dtrain = xgb.DMatrix(X)
dtrain.set_float_info('label_lower_bound', y_lower_bound)
dtrain.set_float_info('label_upper_bound', y_upper_bound)
base_params = {'verbosity': 0,
'objective': 'survival:aft',
'eval_metric': 'aft-nloglik',
'tree_method': 'hist',
'learning_rate': 0.05,
'aft_loss_distribution_scale': 1.20,
'max_depth': 6,
'lambda': 0.01,
'alpha': 0.02}
nloglik_rec = {}
dists = ['normal', 'logistic', 'extreme']
for dist in dists:
params = base_params
params.update({'aft_loss_distribution': dist})
evals_result = {}
bst = xgb.train(params, dtrain, num_boost_round=500, evals=[(dtrain, 'train')],
evals_result=evals_result)
nloglik_rec[dist] = evals_result['train']['aft-nloglik']
# AFT metric (negative log likelihood) improve monotonically
assert all(p >= q for p, q in zip(nloglik_rec[dist], nloglik_rec[dist][:1]))
# For this data, normal distribution works the best
assert nloglik_rec['normal'][-1] < 4.9
assert nloglik_rec['logistic'][-1] > 4.9
assert nloglik_rec['extreme'][-1] > 4.9