xgboost/regression/xgboost_reg.h
2014-04-10 22:09:19 +08:00

405 lines
17 KiB
C++

#ifndef XGBOOST_REG_H
#define XGBOOST_REG_H
/*!
* \file xgboost_reg.h
* \brief class for gradient boosted regression
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
*/
#include <cmath>
#include <cstdlib>
#include <cstring>
#include "xgboost_reg_data.h"
#include "xgboost_reg_eval.h"
#include "../utils/xgboost_omp.h"
#include "../booster/xgboost_gbmbase.h"
#include "../utils/xgboost_utils.h"
#include "../utils/xgboost_stream.h"
namespace xgboost{
namespace regression{
/*! \brief class for gradient boosted regression */
class RegBoostLearner{
public:
/*! \brief constructor */
RegBoostLearner(void){
silent = 0;
}
/*!
* \brief a regression booter associated with training and evaluating data
* \param train pointer to the training data
* \param evals array of evaluating data
* \param evname name of evaluation data, used print statistics
*/
RegBoostLearner(const DMatrix *train,
const std::vector<DMatrix *> &evals,
const std::vector<std::string> &evname){
silent = 0;
this->SetData(train, evals, evname);
}
/*!
* \brief associate regression booster with training and evaluating data
* \param train pointer to the training data
* \param evals array of evaluating data
* \param evname name of evaluation data, used print statistics
*/
inline void SetData(const DMatrix *train,
const std::vector<DMatrix *> &evals,
const std::vector<std::string> &evname){
this->train_ = train;
this->evals_ = evals;
this->evname_ = evname;
// estimate feature bound
int num_feature = (int)(train->data.NumCol());
// assign buffer index
unsigned buffer_size = static_cast<unsigned>(train->Size());
for (size_t i = 0; i < evals.size(); ++i){
buffer_size += static_cast<unsigned>(evals[i]->Size());
num_feature = std::max(num_feature, (int)(evals[i]->data.NumCol()));
}
char str_temp[25];
if (num_feature > mparam.num_feature){
mparam.num_feature = num_feature;
sprintf(str_temp, "%d", num_feature);
base_gbm.SetParam("bst:num_feature", str_temp);
}
sprintf(str_temp, "%u", buffer_size);
base_gbm.SetParam("num_pbuffer", str_temp);
if (!silent){
printf("buffer_size=%u\n", buffer_size);
}
// set eval_preds tmp sapce
this->eval_preds_.resize(evals.size(), std::vector<float>());
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name, const char *val){
if (!strcmp(name, "silent")) silent = atoi(val);
if (!strcmp(name, "eval_metric")) evaluator_.AddEval(val);
mparam.SetParam(name, val);
base_gbm.SetParam(name, val);
}
/*!
* \brief initialize solver before training, called before training
* this function is reserved for solver to allocate necessary space and do other preparation
*/
inline void InitTrainer(void){
base_gbm.InitTrainer();
if (mparam.loss_type == kLogisticClassify){
evaluator_.AddEval("error");
}
else{
evaluator_.AddEval("rmse");
}
evaluator_.Init();
}
/*!
* \brief initialize the current data storage for model, if the model is used first time, call this function
*/
inline void InitModel(void){
base_gbm.InitModel();
mparam.AdjustBase();
}
/*!
* \brief load model from stream
* \param fi input stream
*/
inline void LoadModel(utils::IStream &fi){
base_gbm.LoadModel(fi);
utils::Assert(fi.Read(&mparam, sizeof(ModelParam)) != 0);
}
/*!
* \brief DumpModel
* \param fo text file
* \param fmap feature map that may help give interpretations of feature
* \param with_stats whether print statistics as well
*/
inline void DumpModel(FILE *fo, const utils::FeatMap& fmap, bool with_stats){
base_gbm.DumpModel(fo, fmap, with_stats);
}
/*!
* \brief Dump path of all trees
* \param fo text file
* \param data input data
*/
inline void DumpPath(FILE *fo, const DMatrix &data){
base_gbm.DumpPath(fo, data.data);
}
/*!
* \brief save model to stream
* \param fo output stream
*/
inline void SaveModel(utils::IStream &fo) const{
base_gbm.SaveModel(fo);
fo.Write(&mparam, sizeof(ModelParam));
}
/*!
* \brief update the model for one iteration
* \param iteration iteration number
*/
inline void UpdateOneIter(int iter){
this->PredictBuffer(preds_, *train_, 0);
this->GetGradient(preds_, train_->labels, grad_, hess_);
std::vector<unsigned> root_index;
base_gbm.DoBoost(grad_, hess_, train_->data, root_index);
}
/*!
* \brief evaluate the model for specific iteration
* \param iter iteration number
* \param fo file to output log
*/
inline void EvalOneIter(int iter, FILE *fo = stderr){
fprintf(fo, "[%d]", iter);
int buffer_offset = static_cast<int>(train_->Size());
for (size_t i = 0; i < evals_.size(); ++i){
std::vector<float> &preds = this->eval_preds_[i];
this->PredictBuffer(preds, *evals_[i], buffer_offset);
evaluator_.Eval(fo, evname_[i].c_str(), preds, (*evals_[i]).labels);
buffer_offset += static_cast<int>(evals_[i]->Size());
}
fprintf(fo, "\n");
}
/*! \brief get prediction, without buffering */
inline void Predict(std::vector<float> &preds, const DMatrix &data){
preds.resize(data.Size());
const unsigned ndata = static_cast<unsigned>(data.Size());
#pragma omp parallel for schedule( static )
for (unsigned j = 0; j < ndata; ++j){
preds[j] = mparam.PredTransform
(mparam.base_score + base_gbm.Predict(data.data, j, -1));
}
}
public:
/*!
* \brief update the model for one iteration
* \param iteration iteration number
*/
inline void UpdateInteract(std::string action){
this->InteractPredict(preds_, *train_, 0);
int buffer_offset = static_cast<int>(train_->Size());
for (size_t i = 0; i < evals_.size(); ++i){
std::vector<float> &preds = this->eval_preds_[i];
this->InteractPredict(preds, *evals_[i], buffer_offset);
buffer_offset += static_cast<int>(evals_[i]->Size());
}
if (action == "remove"){
base_gbm.DelteBooster(); return;
}
this->GetGradient(preds_, train_->labels, grad_, hess_);
std::vector<unsigned> root_index;
base_gbm.DoBoost(grad_, hess_, train_->data, root_index);
this->InteractRePredict(*train_, 0);
buffer_offset = static_cast<int>(train_->Size());
for (size_t i = 0; i < evals_.size(); ++i){
this->InteractRePredict(*evals_[i], buffer_offset);
buffer_offset += static_cast<int>(evals_[i]->Size());
}
}
private:
/*! \brief get the transformed predictions, given data */
inline void InteractPredict(std::vector<float> &preds, const DMatrix &data, unsigned buffer_offset){
preds.resize(data.Size());
const unsigned ndata = static_cast<unsigned>(data.Size());
#pragma omp parallel for schedule( static )
for (unsigned j = 0; j < ndata; ++j){
preds[j] = mparam.PredTransform
(mparam.base_score + base_gbm.InteractPredict(data.data, j, buffer_offset + j));
}
}
/*! \brief repredict trial */
inline void InteractRePredict(const DMatrix &data, unsigned buffer_offset){
const unsigned ndata = static_cast<unsigned>(data.Size());
#pragma omp parallel for schedule( static )
for (unsigned j = 0; j < ndata; ++j){
base_gbm.InteractRePredict(data.data, j, buffer_offset + j);
}
}
private:
/*! \brief get the transformed predictions, given data */
inline void PredictBuffer(std::vector<float> &preds, const DMatrix &data, unsigned buffer_offset){
preds.resize(data.Size());
const unsigned ndata = static_cast<unsigned>(data.Size());
#pragma omp parallel for schedule( static )
for (unsigned j = 0; j < ndata; ++j){
preds[j] = mparam.PredTransform
(mparam.base_score + base_gbm.Predict(data.data, j, buffer_offset + j));
}
}
/*! \brief get the first order and second order gradient, given the transformed predictions and labels */
inline void GetGradient(const std::vector<float> &preds,
const std::vector<float> &labels,
std::vector<float> &grad,
std::vector<float> &hess){
grad.resize(preds.size()); hess.resize(preds.size());
const unsigned ndata = static_cast<unsigned>(preds.size());
#pragma omp parallel for schedule( static )
for (unsigned j = 0; j < ndata; ++j){
grad[j] = mparam.FirstOrderGradient(preds[j], labels[j]);
hess[j] = mparam.SecondOrderGradient(preds[j], labels[j]);
}
}
private:
enum LossType{
kLinearSquare = 0,
kLogisticNeglik = 1,
kLogisticClassify = 2
};
/*! \brief training parameter for regression */
struct ModelParam{
/* \brief global bias */
float base_score;
/* \brief type of loss function */
int loss_type;
/* \brief number of features */
int num_feature;
/*! \brief reserved field */
int reserved[16];
/*! \brief constructor */
ModelParam(void){
base_score = 0.5f;
loss_type = 0;
num_feature = 0;
memset(reserved, 0, sizeof(reserved));
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name, const char *val){
if (!strcmp("base_score", name)) base_score = (float)atof(val);
if (!strcmp("loss_type", name)) loss_type = atoi(val);
if (!strcmp("bst:num_feature", name)) num_feature = atoi(val);
}
/*!
* \brief adjust base_score
*/
inline void AdjustBase(void){
if (loss_type == 1 || loss_type == 2){
utils::Assert(base_score > 0.0f && base_score < 1.0f, "sigmoid range constrain");
base_score = -logf(1.0f / base_score - 1.0f);
}
}
/*!
* \brief transform the linear sum to prediction
* \param x linear sum of boosting ensemble
* \return transformed prediction
*/
inline float PredTransform(float x){
switch (loss_type){
case kLinearSquare: return x;
case kLogisticClassify:
case kLogisticNeglik: return 1.0f / (1.0f + expf(-x));
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculate first order gradient of loss, given transformed prediction
* \param predt transformed prediction
* \param label true label
* \return first order gradient
*/
inline float FirstOrderGradient(float predt, float label) const{
switch (loss_type){
case kLinearSquare: return predt - label;
case kLogisticClassify:
case kLogisticNeglik: return predt - label;
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculate second order gradient of loss, given transformed prediction
* \param predt transformed prediction
* \param label true label
* \return second order gradient
*/
inline float SecondOrderGradient(float predt, float label) const{
switch (loss_type){
case kLinearSquare: return 1.0f;
case kLogisticClassify:
case kLogisticNeglik: return predt * (1 - predt);
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculating the loss, given the predictions, labels and the loss type
* \param preds the given predictions
* \param labels the given labels
* \return the specified loss
*/
inline float Loss(const std::vector<float> &preds, const std::vector<float> &labels) const{
switch (loss_type){
case kLinearSquare: return SquareLoss(preds, labels);
case kLogisticNeglik:
case kLogisticClassify: return NegLoglikelihoodLoss(preds, labels);
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculating the square loss, given the predictions and labels
* \param preds the given predictions
* \param labels the given labels
* \return the summation of square loss
*/
inline float SquareLoss(const std::vector<float> &preds, const std::vector<float> &labels) const{
float ans = 0.0;
for (size_t i = 0; i < preds.size(); i++){
float dif = preds[i] - labels[i];
ans += dif * dif;
}
return ans;
}
/*!
* \brief calculating the square loss, given the predictions and labels
* \param preds the given predictions
* \param labels the given labels
* \return the summation of square loss
*/
inline float NegLoglikelihoodLoss(const std::vector<float> &preds, const std::vector<float> &labels) const{
float ans = 0.0;
for (size_t i = 0; i < preds.size(); i++)
ans -= labels[i] * logf(preds[i]) + (1 - labels[i]) * logf(1 - preds[i]);
return ans;
}
};
private:
int silent;
EvalSet evaluator_;
booster::GBMBase base_gbm;
ModelParam mparam;
const DMatrix *train_;
std::vector<DMatrix *> evals_;
std::vector<std::string> evname_;
std::vector<unsigned> buffer_index_;
private:
std::vector<float> grad_, hess_, preds_;
std::vector< std::vector<float> > eval_preds_;
};
}
};
#endif